
United States Patent

US007103597B2

(12) (10) Patent N0.: US 7,103,597 B2
v . . , McGo eran (45) Date of Patent‘ Se 5 2006

(54) ADAPTIVE TRANSACTION MANAGER FOR 5,594,889 A * 1/1997 Colgate et a1. 711/171
COMPLEX TRANSACTIONS AND BUSINESS 5,664,088 A * 9/1997 Romanovsky et a1. 714/13
PROCESS 5,734,897 A * 3/1998 Banks 707/202

5,966,706 A * 10/1999 Biliris et a1. 707/10

76 . - 6,009,405 A * 12/1999 Leymann et a1. 705/9

() Inventor‘ gavllglgl' wllgcGfgergn’ 15205 $255006 6,014,673 A * 1/2000 Davis et a1. 707/202
fee " Ou er I" (U) 6,154,847 A * 11/2000 Scho?eld et a1. 714/4

. 6,192,365 B1* 2/2001 Draper et a1. 707/101

(*) Nome: sublecito any dlsclalmerathetenn Ofthls 6,233,585 B1* 5/2001 Gupta @1111. 707/103 R
P211811t 15 extended Or adiusted under 35 6,289,356 B1 * 9/2001 Hitz et a1. 707/201
U-S-C- 154(1)) by 414 days- 2002/0099756 A1* 7/2002 (3111111001 et a1. 709/102

(21) Appl. N0.: 10/263,5s9 * Cited by examiner

. _ Primary ExamineriDon Wong
(22) Flled' Oct‘ 3’ 2002 Assistant Examiner4Cheryl M Shechtman

(65) Prior Publication Data (74) Attorney, Agent, or F irmiGeorge S. Cole

US 2004/0068501 A1 Apr. 8, 2004 (57) ABSTRACT

(51) Int CL This is a method for managing and optimizing transaction
G06F 7/00 (200601) processing that: (l) signi?cantly expands the robustness of
G06F 17/30 (200601) systems With respect to consistency, reliability, and recov
G06F 12/00 (200601) erability; (2) provides multiple performance improvements

(52) us. Cl. 707/8- 707/202 Overtraditional methods; (3)6nab1estransacti0nsin a dis
(58) Field of Classi?cation Search ’ 707/10 tributed business process to recover from errors Without the

707/101 201 202 cost of tWo-phase commit; (4) enables enhancements to
See application ?le fo’r coinplet’e Search l’listory resource management; and, (5) provides improved schedul

' ing. The method further enables a high degree of collabo
(56) References Cited rative and adaptive transaction management over traditional

transaction managers.
U.S. PATENT DOCUMENTS

4,498,145 A * 2/1985 Baker et a1. 707/202 89 Claims, 5 Drawing Sheets

ORIGINAL ENHANCED

Begin Transaction D Begin Transaction D
34 ~——H #Favor X After First Read X Untii Aiter First Write X
35 —-+ #Favor Y After First Read Y Until Atter Second Write Y
36 —+ #Favor 2 After First Read Z Until After First Write Z

Read X Read X
Read Y Read Y

42 “T’ Read Z

Write X = X - AX
Write X = X — AX

Read 2 43 ——-> WriteY = Y +AX

37 -——-> #Assert Consistency Point

39 —T #Deaiiocate X

WriteY =Y-AY WriteY =Y-AY
WriteZ=Z +AY WriteZ =Z+AY
Write Y = Y + AX

38 —~—+ #Assert Consistency Point
40 ——> #Deaiiocate Y
41 ——> #DeaiiocateZ

Commit Transaction D Commit Transaction D

U.S. Patent Sep. 5, 2006 Sheet 1 0f 5 US 7,103,597 B2

CP3

CPS

FIG. 2 13

U.S. Patent Sep. 5, 2006 Sheet 2 0f 5 US 7,103,597 B2

1 7

\ RSO CPS

RS‘!

18 19

I ?Transaction A Context 29 ‘I UTransaction B Context 24 /32 / 3O

' 26
/’

/
CPS

U.S. Patent Sep. 5, 2006 Sheet 4 0f 5 US 7,103,597 B2

m .GE

\\mv I 5.63%;

2 / mo mm

m cozomwcmF
W m c2635;

ww

POO /\/
OH wm

U.S. Patent Sep. 5,2006 Sheet 5 0r 5 US 7,103,597 B2

73
k

62 f
Execution Manager

/ 6O / 63 f

Consistency Manager Parser

, 64 - / / 66

Correction Processor Restructuring Processor

f 65 69

Dependency Manager Isolation Manager

//' /” Recovery Manager Publication/Subscription Manager

/a 61 /— 67

71 Repository Manager 72 Resource Manager

Repository Resource Scheduler

FIG. 6

US 7,103,597 B2
1

ADAPTIVE TRANSACTION MANAGER FOR
COMPLEX TRANSACTIONS AND BUSINESS

PROCESS

BACKGROUND OF THE INVENTION

Atransaction can be de?ned as a set of actions on a set of

resources or some subset thereof, said actions including
changes to those resources. The initial state of a set of
resources that Will be changed by a transaction is de?ned as
being consistent, and so either implicitly or explicitly satisfy
a set of consistency conditions (a.k.a. constraints or integrity
rules). Each particular transaction includes one or more
operations that may alter the resources (eg addition, sub
traction, selection, exchange, or transformation). Once
de?ned, the transaction creates a delimitible set of changes
from initial conditions. Each change to the resources (short
of the ?nal change) creates an intermediate state of those
resources, Which often are not intended to be accessible to
other transactions.
Under such an implementation, each transaction operates

on the set of resources in an initial state and, after any
operations performed by the transaction, leaves the set of
resources in a ?nal state. Thus a transaction may be vieWed
as a means of transforming a set of resources from an initial
consistent state to a ?nal consistent state (possibly, but
generally not the same as the initial).

Transaction processing is subject to multiple dif?culties.
A transaction may use resources inef?ciently. Transactions
may fail to complete operations as designed. Errors may
cause the ?nal state to be inconsistent. Transactions may
execute too sloWly. Such difficulties can be handled manu
ally if the environment is simple enough. Automated or
semi-automated means (as supplied, for example, by a
transaction management facility) are required in more
sophisticated situations.
An environment in Which transactions operate is often

subject to a transaction management facility, often referred
to simply as a “transaction manager.” The responsibility of
a transaction manager is to ensure the initial and ?nal states
are consistent and that no harmful side effects occur in the
event that concurrent transactions share resources (isola
tion). A transaction manager typically enforces the isolation
of a speci?c transaction using a default concurrency control
mechanism (e.g., pessimistic or optimistic). If a condition
such as an error occurs before the ?nal state is reached, it is
often the responsibility of a transaction management facility
to return the system to the initial state. This sort of auto
mated transaction processing lies behind the greatest volume
of ?nancial and commercial transactions extant in modern
society.
Automated transaction processing, both With and Without

transaction management facilities, has been designed tradi
tionally With an unspoken assumption that errors are excep
tional. The programming, both its design and coding,
focuses on implementing transactions in a near-perfect
World Where it is permissible to simply start over and redo
the Work if anything goes Wrong. Even if this Were to model
accurately the majority of automated commercial transac
tions, it Would not re?ect the entirety of any business’s real
World experience. In the real World, eighty percent or more
of the management effort and expertise is about handling
exceptions, mistakes, and imperfections. In automated trans
action processing, error recovery mechanisms are usually
seen as an afterthought, a ?nal ‘check-box’ on the list of
features and transactions that can be handled (if all goes
perfectly).

20

25

30

35

40

45

50

55

60

65

2
A nai've approach to the implementation of complex

automated transaction processing systems maintains that the
system resulting from integrating (via transactional messag
ing) a set of applications that already have error recovery
mechanisms Will itself recover from errors. Experience and
careful analysis have shoWn that nothing could be further
from the truth. As more and more business functions are
integrated, the problems of automated error recovery
become increasingly important and complex. Errors can
propagate just as rapidly as correct results, but the conse
quences can be devastating.
As more and more business functions are integrated, the

problems of automated error recovery and resource man
agement become increasingly important. It’s only natural
that many of the systems that a business automates ?rst are
deemed by that business to enable the execution of its core
competencies, Whose completion is ‘mission critical’. Auto
mation demands the reliability We associate With transaction
management if error recovery is to be robust. With each
success at automating a particular business transaction, the
value of connecting and integrating disparate automated
transactions increases. Separate transactions, each of them
simple, When connected become a complex transaction.
With each integrative step, the need for acceptable error
recovery becomes ever more important.

Traditional approaches to automated transaction manage
ment emphasiZe means to guarantee the fundamental prop
erties of a properly de?ned or ‘formal’ transaction, Which are
atomicity, consistency, isolation, and durability. These prop
erties are usually referred to by their acronym, ACID.
Transactions, especially if complex, may share access to
resources only under circumstances that do not violate these
properties, although the degree to Which transaction man
agement facilities strictly enforce the isolation property is
often at the discretion of the user.

It is not uncommon to refer to any group of operations on
a set of resources (i.e., a unit of Work) as a transaction, even
if they do not completely preserve the ACID properties. In
keeping With this practice, We Will use the term transaction
Without a qualifying adjective or other modi?er When refer
ring a unit of Work of any kind Whether formal or not. We
Will use the quali?ed term pseudo-transaction When We Want
to refer speci?cally to a unit of Work that does not preserve
all of the ACID properties, although it may preserve some of
them. Pseudo-transactions exist for a variety of reasons
including the dif?culty of proper transaction design and
enforcement, incomplete knoWledge of consistency rules,
attempts to increase concurrency at the expense of decreased
isolation, attempts to increase performance at the expense of
atomicity, and so on.
The ACID properties lead to a very speci?c behavior

When one or more of the elements that compose a transaction
fail in a manner that cannot be transparently recovered (a
so-called “unrecoverable error”): the atomicity property
demands that the state of the resources involved be restored
so that it is as though no changes Whatsoever had been made
by the transaction. Thus, an unrecoverable error alWays
results in transitioning to the initial state (i.e., the initial state
being restored), the typical process for achieving this being
knoWn as “rollback.” An alternative method of restoring the
initial state is to run an “undo” or “inverse” transformation

knoWn as a compensating transaction (discussed in more
detail beloW). This of course presumes that for such man
dated compensating transactions, for every error it is pos
sible to ?rst identify the class of error, then most suitable
compensating transaction, and ?nally to implement that
compensating transaction. A problem With the current

US 7,103,597 B2
3

approach to enforcing atomicity is that viable Work is often
Wasted When the initial state is recovered. A second problem
is that transactions dependent on a failed transaction cannot
begin until the failed transaction is resubmitted and ?nally
completes, thereby possibly resulting in excessive process
ing times and perhaps ultimately causing a failure to achieve
the intended business purpose.

The consistency property guarantees the correctness of
transactions by enforcing a set of consistency conditions on
the ?nal state of every transaction. Consistency conditions
are usually computable, Which means that a softWare test is
often executed to determine Whether or not a particular
consistency condition is satis?ed in the current state. Thus,
a correctly Written transaction becomes one Which, When
applied to resources in a ?rst consistent state, transforms
those resources into a second (possibly identical) consistent
state. Intermediate states, created as the component opera
tions of a transaction are applied to resources, may or may
not satisfy a set of consistency conditions and so may or may
not be a consistent state. Aproblem With this approach is that
consistency must be either cumulative during the transac
tion, or else enforced at transaction completion. In most
cases, transactions are assumed to be Written correctly and
the completion of a transaction is simply assumed to be
su?icient to insure a consistent state. This leads to a further
problem: the interactions among a collection of transactions
that constitute a complex transaction may not result in a
consistent state unless all consistency rules are enforced
automatically at transaction completion.

For complex transactions that share resources, the isola
tion property further demands that concurrent or dependent
transactions behave as though they Were run in isolation (or
Were independent): that is, no other transaction can have
seen any intermediate changes (there are no “side effects”)
because these might be inconsistent. The usual approach to
ensuring the isolation property is to lock any resource that is
touched by the transaction, thereby ensuring that other
transactions cannot modify any such resource (a share lock)
and cannot access modi?ed resources (an exclusive lock).
With regard to resource management, locking is used to
implement a form of dynamic scheduling. The most com
monly used means for ensuring this is implementing the rule
knoWn as “tWo-phase locking” Wherein While a transaction
is processing, locks on resources accessed by that transac
tion are acquired during phase one and are released only
during phase tWo, With no overlap in these phases. Such an
implementation guarantees that concurrent or dependent
transactions can be interleaved While preserving the isola
tion property. A problem With this approach is that it
necessarily increases the processing time of concurrent
transactions that need to access the same resources, since
once a resource is locked, it may not be modi?ed by any
other transaction until the locking transaction has com
pleted. Another problem due to this approach is that it
occasionally creates a deadly embrace or deadlock condition
among a group of transactions. In the simplest case of the
group consisting of only tWo transactions, each of the tWo
transactions Wait inde?nitely for a resource locked by the
other. Deadlock conditions can arise in complex Ways
among groups of more than tWo transactions. Other
approaches to maintaining the isolation property include
optimistic concurrency (such as time stamping) and lock or
con?ict avoidance (such as static scheduling via transaction
classes or con?ict graphs, nested transactions, and multi
versioning). Various caching schemes have been designed to
improve concurrency by minimiZing the time required to
access a resource, While respecting a particular approach to

20

25

30

35

40

45

50

55

60

65

4
enforcing the isolation property. Each of the existing
approaches to enforcing isolation, and the associated tech
niques and implications for resource management, fails to
meet the needs imposed by complex, possibly distributed,
business transactions.

If no error occurs, the completion of the transaction
guarantees not only a consistent state, but also a durable one
(the durability property) through a process knoWn as “com
mit.” The step in a transaction at Which a “commit” is
processed is knoWn as the commit point. The durability
property is intended to guarantee that the speci?c result of a
completed transaction can be recovered at a later time, and
cannot be repudiated. Ordinarily, the durability property is
interpreted as meaning that the ?nal state of resources
accessed by a transaction is, in effect, recorded in non
volatile storage before con?rming the successful completion
of the transaction. Usually, this is done by recording some
combination of resource states, along With the operations
that have been applied to the resources in question. The
softWare that handles this recording is called a resource
manager.
A variant of the commit point, in Which a user (possibly

via program code) asserts to the transaction manager that
they Wish to make the then current state recoverable and may
subsequently Wish to rollback Work to that knoWn state, is
knoWn as a savepoint. Because savepoints are arbitrarily
de?ned, they need not represent a consistent state. Further
more, the system Will return to a speci?c savepoint only at
the explicit request of the user. Typically, savepoints are not
durable. Savepoints cannot be asserted automatically by the
system except in the most rudimentary fashion as, for
example, after every operation or periodically based on
elapsed time or quantity of resources used. None of these
approaches enable the system to determine to Which save
point it should rollback.
When the elements of a transaction are executed (Whether

concurrent or sequential) under multiple, independent
resource managers, the rollback and commit processes can
be coordinated so that the collection behaves as though it
Were a single transaction. In essence, the elements are
implemented as transactions in their oWn right, but are
logically coupled to maintain ACID properties to the desired
degree for the collection overall. Such transactions are called
distributed transactions. The usual method for achieving this
coordination is called tWo-phase commit. Unfortunately, this
is an inef?cient process Which tends to reduce concurrency
and performance, and cannot guarantee coordination under
all failure conditions. Under certain circumstances, a system
failure during tWo-phase commit can result in a state that is
incorrect and that then requires di?icult, costly, and time
consuming manual correction during Which the system is
likely to be unavailable. As With single transactions, com
pensating transactions can sometimes be used to restore the
initial state of a collection of logically coupled transactions.
In such cases, it may be necessary to run special compen
sating transactions that apply to the entire collection of
transactions (knoWn as a compensation sphere Whether or
not the collection is a distributed transaction).

There are numerous optimiZations and variations on these

techniques, including split transactions, nested transactions,
and the like. In practice, all these approaches have several
disadvantages (and differ from the present invention):

poor concurrency due to locking is common;
the cost of rollback, folloWed by redoing the transaction,

can be excessive;
the conditions of consistency, isolation, and durability are

tightly bound together;

US 7,103,597 B2
5

logically dependent transactions must either (a) be run
sequentially With the possibility that an intervening trans
action Will alter the ?nal state of the ?rst transaction before
the second transaction can take over, or (b) be run together
as a distributed transaction, thereby locking resources for a
much longer time and introducing tWo-phase commit per
formance and concurrency penalties;

there is signi?cant overhead in memory and processing
costs on already complex transactions;

the errors Which are encountered and identi?ed are not

recorded (Which can complicate systematic improvement of
a system);

it is often undesirable in a business scenario to return a set
of resources to some prior state, especially When a partially
ordered set of interdependent transactions (i.e., a business
process) has been run;

it is not alWays possible to de?ne a compensating trans
action for a given transaction, and the best compensating
transaction often depends on context;

business transactions may result in very long times from
start to completion, and may involve many logically coupled
transactions, possibly each running under separate transac
tion or resource managers; and, ?nally,

the transaction manager Will not be able to compensate for
or recover from certain context-dependent, external actions
that affect resources external to the resource manager.

Transactions can be classi?ed broadly into three types,
With corresponding quali?ers or adjectives: physical, logi
cal, and business. A physical transaction is a unit of recov
ery; that is, a group of related operations on a set of
resources that can be recovered to an initial state as a unit.

The beginning (and end) of a physical transaction is thus a
point of recovery. A physical transaction should have the
atomicity and durability properties. A logical transaction is
a unit of consistency; that is, a group of related operations
on a set of resources that together meet a set of consistency
conditions and consisting of one or more coordinated physi
cal transactions. The beginning (and end) of a logical
transaction is a point of consistency. In principle, logical
transactions should have the ACID properties. A business
transaction is a unit of audit; that is, a group of related
operations on a set of resources that together result in an
auditable change and consisting of one or more coordinated
transactions. If, as is the ideal construction, each of these
component transactions are logical transactions, business
transactions combine to form a predictable, Well-behaved
system. The beginning and end of a business transaction are
thus audit points, by Which We mean that an auditor can
verify the transaction’s identity and execution. Audit infor
mation obtained might include identifying the operations
performed, in What order (to the degree it matters), by
Whom, When, With What resources, that precisely Which
possible decision alternatives Were taken in compliance With
Which rules, and that the audit system Was not circumvented.
Business transactions can be composed of other business
transactions. Time spans of a business transaction can be as
short as microseconds or span decades (e.g., life insurance
premium payments and eventual disbursement Which must
meet the consistency conditions imposed by laW and policy).

The ef?ciency, correctness, and auditability of automated
business transactions have a tremendous in?uence on a

business’ pro?tability. As transaction complexity increases,
the impact of inefficiencies and errors increases combinato
rially.

There are at least four general classes of Ways that
transactions can be complex. First, a transaction may
involve a great deal of detail in its de?nition, each step of

20

25

30

35

40

45

50

55

60

65

6
Which may be either complex or simple, and may inherently
require considerable time to process. Even if each individual
step or operation is simple, the totality of the transaction
may exceed the average human capacity to understand it in
detailifor example, adding the total sum of money paid to
a business on a given day, When the number of inputs are in
the millions. This sort of complexity is inherently addressed
(to the degree possible) by automation, and by folloWing the
Well-knoWn principles of good transaction design.

Second, a transaction may be distributed amongst mul
tiple, separate environments, each such environment han
dling a sub-set of the total transaction. The set of resources
may be divisible or necessarily shared, just as the processing
may be either sequential or concurrent, and may be depen
dent or independent. Distributed transactions inherently
impose complexity in maintaining the ACID properties and
on error recovery.

Third, a transaction may be comprised of multiple, linked
transactionsifor example, adding all of the monies paid in
together, adding all of the monies paid out together, and
summing the tWo, to establish a daily net cash?oW balance
for a company. Such joined transactions may include as a
sub-transaction any of the three complex transactions (in
cluding other joined transactions, in recursive iteration).
And, of course, linked transactions may then be further
joined, theoretically ad in?nitum. Each sub transaction is
addressed as its oWn transaction, and thus is handled using
the same means and de?nitiveness. Linked transactions can

become extremely complex due to the many Ways they can
be interdependent, thus making their design, maintenance,
and error management costly and their use risky. Tremen
dous care must be taken to keep complexity under control.

Fourth, and last, a transaction may run concurrently in a
mix of transactions (physical, logical, business, and pseudo).
As the number of concurrent transactions, the number of
inter-dependencies, or the speed of processing increase, or
as the available resources decrease, the behavior of the
transaction becomes more complex. Transaction managers,
careful transaction design, and Workload scheduling to avoid
concurrency are among the methods that are used to manage
this type of complexity, and provide only limited relief. Part
of the problem is that the group behavior of the mix becomes
increasingly unpredictable, and therefore unmanageable,
With increasing complexity.
A business process may be understood as consisting of a

set of partially-ordered inter-dependent or linked transac
tions (physical, logical, business, and pseudo), sometimes
relatively simple and sometimes enormously complex, itself
implementing a business transaction. The How of a business
process may branch or merge, can involve concurrent activi
ties or transactions, and can involve either synchronous or
asynchronous ?oWs. Automated business process manage
ment is rapidly becoming the principal means of enabling
business integration and business-to-business exchanges
(e.g., supply chains and trading hubs).
Knowledge of both the internal logical structure of trans

actions and the interrelationships among a group of trans
actions is often represented in terms of an interconnected set
of dependencies. TWo types of dependency are important
here: semantic and resource. If completion of an operation
(or transaction) A is a necessary condition for the correct
completion of some operation (or transaction) B, B is said to
have semantic dependency on A. If completion of an opera
tion (or transaction) T requires some resource R, transaction
T is said to have a resource dependency on the resource R.
Resource dependencies become extremely important to the
ef?ciency of transaction processing, especially if the

US 7,103,597 B2
7

resource cannot be shared (that is, if a principle of mutual
exclusion is either inherent or enforced). In such cases,
transactions (or operations) that depend on the resource
become serialiZed on that resource, and thus, transactions
that require the resource depend on (and Wait for) the
completion of transaction that has the resource.

Dependencies are generally depicted via a directed graph,
in Which the nodes represent either transactions or resources
and arroWs represent the dependency relationship. The
graph that represents transactions that Wait for some
resource held by another transaction, for example, is called
a “Wait graph.” Dependency graphs may be as simple as a
dependency chain or even a dependency tree, or may be a
very complex, and non-?at network.

The value of successfully managing complexity through
automated means groWs as the transactions being managed
become more complex, as this uses computeriZation’s prin
cipal strength: the capacity for managing tremendous
amounts of detail, detail that Would certainly overWhelm any
single human Worker, and threaten to overWhelm a human
organiZation not equipped With computer tools.

Unfortunately, the cost of any error that may propagate,
for example, doWn a dependency chain of simple transac
tions, or affect a net of distributed transactions, also
increases. Moreover, the cost of identifying possible sources
of error increases as the contextual background for a com

plex transaction broadens, as all elements, assumptions, and
consequences of particular transition states that may be
visited While the transaction is processing must be examined
for error. One certainty is that the laW of unintended con
sequences operates With harsh and potentially devastating
impact on program designers and users Who blithely assume
that their processes Will alWays operate exactly as they are
intended, rather than exactly according to What they are told
(and sometimes more telling, not told) to do.

Error-handling for complex transactions currently oper
ates With a bias toWards rescinding a ?aWed transaction and
restoring the original starting state. Under this approach,
only When a transaction has successfully and correctly
completed is the computer program granted permission to
commit itself to the results and permanently accept them. If
an error occurs, then the transaction is rolled back to the
starting point and the data and control restored. This “either
commit or rollback” approach imposes a heavy overhead
load on complex transaction processing. If the complex
transaction is composed of a chain of single, simpler trans
actions, then the entire chain must be rolled back to the
designated prior commit point. All of the Work done betWeen
the prior commit point and the error is discarded, even
though it may have been valid and correct. If the complex
transaction is a distributed one, then all resources used or
affected by the transaction must be tracked and blocked from
other uses until a transaction has successfully attained the
next commit point; and When a single part of the entire
distributed transaction encounters an error, all parts (and the
resources used) must be restored to the values established at
the prior commit point. Again, the Work that has been
successfully performed, even that Which is not affected by
the error, must be discarded. With linked transactions or any
mix involving possibly interdependent pseudo-transactions,
no general solution to the problem of automated error
recovery has heretofore been presented.

Furthermore, the standard approach treats all transactional
operations as identical. Operations, hoWever, differ as to
their reversibility, particularly in computer operations. Addi
tion of Zero may be reversible by subtracting Zero. But
multiplication by Zero, even though the result is boring, is

20

25

30

35

40

45

50

55

60

65

8
not exactly reversible by division by Zero. Non-commutable
transactions are not differentiated from commutable ones,
nor do they have more stringent controls placed around their
inputs and operation.
A second method currently used for error-handling in

complex transactions is the application, after an error, of a
pre-established compensatory mechanism, also called (col
lectively) compensating transactions as noted above. This
presumes that all errors experienced can be predetermined,
?t into particular categories, and a proper method of cor
rection devised for each category. Using compensating
transactions introduces an inherent risk of unrecoverable
error: compensating transaction may themselves fail.
Dependence entirely on compensating transactions risks the
imposition of a Procrustean solution on a correct transaction
that has been mistakenly identi?ed as erroneous, or even on
an erroneous transaction Where the correction asserted
becomes Worse than the error.

Inherent in the use of compensating transactions is an
assumption that each individually de?ned transaction has a
matching transaction (the “compensating transaction”) that
Will “undo” any Work that the original transaction did. When
transactions are treated in isolation or are applied sequen
tially, it is pretty easy to come up With compensating
transactions. All that is needed is the state of the system
saved from the beginning of the transaction and a function
to restore that state. (In essence, this is hoW one recovers a
?le using a backup copy. All that is lost is the intermediate
correct stages betWeen preparation of the backup and the
occurrence of the error.) When transactions become inter
leaved, this simplistic notion of a compensating transaction
no longer Works and the implementation a bit trickier. In
fact, a compensating transaction may not even exist for
certain transactions. The compensating transaction may be
selected and applied automatically by the transaction man
ager. Still, the process is much the same: the system is
ultimately returned to an earlier state or its equivalent.
Automated support for compensating transactions

requires that, for each transaction, a corresponding compen
sating transaction be registered With an error management
system so that recovery can take place automatically and
consistently. The rules for using compensating transactions
become more complex as the transaction model departs
further from the familiar “?at” model. Formally, compen
sating transactions should alWays return a system to a prior
state. If multiple systems are recovered, they are all recov
ered to prior states that share a common point in time. If the
atomic actions that make up a transaction can be done in any
order, and if each of these has an undo operation, then such
a compensating transaction can alWays be de?ned. Three
guidelines have been published (McGoveran, 2000): (1) Try
to keep the overall transaction model as close as possible to
the traditional “?at” model or else a simple hierarchy of
strictly nested transactions. (2) Design the atomic actions so
that order of application Within a transaction does not matter.
(3) Make certain that compensating transactions are applied
in the right order.
A transaction logically consists of a begin transaction

request, a set of steps or operations, each typically (though
not necessarily) processed in sequential order of request and
performing some manipulation of identi?ed resources, and a
transaction end request (Which may be, for example, a
commit, an abort, a rollback to named savepoint, and the
like). Because the state of the art typically processes each
step in the order received, the management of affected
resources is largely cumulative rather than either predeter
mined or predictive, even When the entire transaction is

US 7,103,597 B2

submitted at one time. Resource management, and in par
ticular the scheduling of both concurrent transactions and
the operations of Which they are composed, may be either
static or dynamic. Static scheduling uses various techniques
such as con?ict graphs to determine in advance of execution
Which transactions and operations may be interleaved or run
concurrently. Dynamic scheduling uses various techniques
such as locking protocols to determine at execution time
Which transactions and operations may be interleaved or run
concurrently.

SUMMARY OF THE INVENTION

As outlined above, the usual interpretation of the ACID
properties introduces a number of dif?culties. The current
interpretation of the atomicity property has resulted in an
approach to error recovery that is costly in terms of both
time and other resources in that it requires the ability to
return affected resources to an initial state. The current

interpretation of the consistency property recogniZes con
sistent states only at explicit transaction boundaries, result
ing in excessive processing at the end of a transaction and
increased chance of failure. The isolation property is inter
preted as strictly precluding the sharing of modi?ed
resources and operations, so that performance is affected and
certain operations may be performed redundantly even When
they are identical. Finally, the durability property is gener
ally interpreted as requiring a hard record of only the ?nal
state of a transaction’s resources (or its equivalent), thereby
sometimes requiring excessive processing at commit or
rollback. All of these taken together result in less than
optimal use of resources and ine?icient error recovery
mechanisms. The traditional techniques for preserving the
ACID properties, optimiZing resource usage, and recovering
from errors cannot be applied effectively in many business
environments involving complex transactions, especially
those pertaining to global electronic commerce and business
process automation.

The current invention introduces a method of transaction
processing, comprised of a set of sub-methods Which pre
serve the ACID properties Without being restricted by the
traditional interpretations. The concept of atomicity is
re?ned to mean that either all effects speci?c to a transaction
Will complete or they Will all fail. The concept of consis
tency is re?ned to mean that Whenever a class of consistency
conditions apply to tWo states connected by a set of opera
tions Which are otherWise atomic, isolated, and durable as
de?ned here, that set of operations constitute an implicit
transaction. The isolation property is re?ned to mean that no
tWo transactions produce a con?icting or contradictory effect
on any resource on Which they are mutually and concur
rently (that is, during the time they are processed) depen
dent. The durability property is re?ned to mean that the ?nal
state of a transaction is recoverable insofar as that state has
any effect on the consistency of the history of transactions as
of the time of recovery. Thus, if the recovered state differs
from the ?nal state in any Way, the durability property is a
guarantee that all those differences are consistent With all
other recovered states and external effects of the transaction
history. Finally, a logical transaction is understood as a
transition from one state in a class of consistent states to a
state in another class of consistent states. This is similar to,
but clearly distinct from, the concept that the interleaved
operations of a set of serialiZable, concurrent transactions
produces a ?nal result that is identical to at least one serial
execution of those transactions. Just as serialiZability pro
vides no guarantee as to Which apparent ordering of the

20

25

30

35

40

45

50

55

60

65

10
transactions Will result, so the neW understanding of a
logical transaction provides no guarantee as to Which con
sistent state in the class of achievable states Will result.
The present invention asserts that these re?nements of the

ACID properties and of logical transactions permit a more
realistic computer representation of transaction processing,
especially business transaction processing. Furthermore,
these re?nements permit transaction processing methods
that include both the traditional methods and the sub
methods described in this invention. The neW set of sub
methods used, both individually and together, make it pos
sible to manage complex transactional environments, While
optimiZing the use of resources in various Ways. These
techniques extend to distributed transactions, and to busi
ness transactions Which span both multiple individual trans
actions as, for example, in a business process, and multiple
business entities as is required in electronic commerce and
business-to-business exchanges.

In particular, these sub-methods include: (1) establishing
and using consistency points Which minimiZes the cost of
recovery under certain types of error; (2) transaction relay
ing Which permits Work sharing across otherWise isolated
transactions, While simultaneously minimiZing the impact of
failures; (3) corrective transactions Which permit error
recovery Without unnecessarily undoing Work, Without so
called compensating transactions, and While enabling the
tracking and correlation of errors and their correction; (4)
lookahead-based resource management based on dependen
cies Which enables optimiZed resource usage Within and
among transactions; and, (5) dependency-based concurrency
optimiZation Which enables optimiZed scheduling and iso
lation of transactions While avoiding the high cost of locking
and certain other concurrency protocols Wherever possible.
Each of these sub-methods is capable of being used in
complex transaction environments (including distributed,
linked, and mixed) While avoiding the overhead associated
With traditional transaction management techniques such as
tWo-phase commit, each can be used in combination With the
others, and each of these are detailed in the description of the
invention beloW.
TWo of the sub-methods introduced here, consistency

points and corrective transactions, address the problem of
error recovery and correction. Consistency points differ
from savepoints in that they add the requirement of a
consistent state, possibly automatically detected and named.
Corrective transactions differ from compensating transac
tions in that they effectively enfold both error repair and the
correction, Whereas compensating transactions address only
error repair. One problem With the current approaches to
handling errors that occur during complex or distributed
transactions is that they fail almost as often as they succeed.
A second problem is that they are di?icult for the human
individuals Who experience both the problem and the cor
rection, because they do not meet peoples’ expectations of
hoW the real World handles problems. Athird problem is that
they do not offer an opportunity to record both the error and
the correction applied, Which makes adaptive improvements
harder to derive as much of the value of the experience (hoW
the mistake Was made and hoW it Was corrected) is discarded
after the correction is completed. A fourth problem is that
they are relatively inef?cient. Jointly, consistency points and
corrective transactions overcome these problems.
The transaction relaying sub-method provides a means for

ef?cient, consistent management of inter-dependent trans
actions Without violating atomicity or isolation require
ments, Without introducing arti?cial transaction contexts,
and While enabling resource sharing. Current approaches for

US 7,l03,597 B2
11

linking inter-dependent transactions (through, for example,
a single distributed transaction With tWo-phase commit, as
chained transactions, or through asynchronous messaging)
do not simultaneously insure ACID properties and ef?cient,
manageable error recovery. One problem With current
approaches is the high resource cost of ensuring consistency
and atomicity (the later becoming a someWhat arti?cially
expanded requirement). A second problem is the high cost of
error recovery, inasmuch as the approach introduces dif?cult
to manage failure modes, most of Which are incompatible
With the sub-method of corrective transactions introduced
here. A third problem is that the approach, in an attempt to
avoid the high overhead of distributed transactions, may
permit inconsistencies. A fourth problem is that they may be
compatible only With ?at transaction models, While required
business transactions and business processes cannot be
implemented using a ?at transaction model. Transaction
relaying overcomes these problems.

The remaining tWo sub-methods, lookahead-based
resource management, and dependency-based concurrency
optimiZation, each enable ef?cient use of resources, espe
cially in highly concurrent environments. One problem With
current approaches is that they do not make good use of
information knoWn in advance of transaction or operation
execution, but depend primarily on dynamic techniques With
the result that hand-coded solutions may perform more
ef?ciently. A second problem is that they may not be
compatible With the method (or the individual sub -methods)
introduced here, hence an alternative approach to resource
management and concurrency optimiZation is required to
make the other neW sub-methods viable. Lookahead-based
resource management and dependency-based concurrency
optimiZation address these problems.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a transaction state graph contrasting transaction
processing error recovery, With and Without consistency
points.

FIG. 2 is a transaction state graph illustrating a corrective
transaction.

FIG. 3 is a transaction state graph illustrating transaction
relaying.

In FIGS. 1*3, the thicker lines indicate the intended,
error-free How of Work, While the thinner lines indicate
corrective or ameliorative efforts once an error occurs.

FIG. 4 is an example of code reorganization and optimi
Zation using lookahead resource management.

FIG. 5 is a transaction state graph illustrating an example
(one possible alternative out of many) of dependency-based
concurrency control.

FIG. 6 is an overvieW of a component combination for the
joint application of the submethods, implemented in an
ATM.

DETAILED DESCRIPTION OF THE DRAWINGS

FIG. 1: At time t1 (1), a transaction is begun and the
current state is effectively saved. A portion of Work is done
betWeen t1 (1) and t2 (2) and another portion of Work is done
betWeen t2 (2) and t3 (3). At time t4 (4) and before the
transaction can reach its intended completion state (5) an
error is detected. Without consistency points, the ATM
initiates a rollback (7) and restores the initial state (1) at time
t5, effectively losing all the Work done prior to time t4 (4).
The entire transaction must noW be redone.

20

25

30

35

40

50

55

60

65

12
By contrast, if the transaction manager detects and saves

a consistency point at time t3 (3), the ATM initiates a lesser
rollback (6) and restores the saved consistency point (3) at
time t5. The Work done betWeen t1 (1) and t3 (3) is
preserved, and only the Work done after time t3 (3) and prior
to time t4 (4) is lost and must be redone.

FIG. 2: TransactionAbegins at consistency point CPO (8),
transitioning state through consistency points CP1 (9) and
CP2 (10); then Transaction A commits and Transaction B
begins. Transaction B encounters an undesirable condition
E1 (11) before it can transition to consistency point CP3 (12)
and commit. The ATM determines that condition E1 (11) is
associated With consistency points of category C1, and that
only CP1 (9) of prior consistency points CPO, CPI, and CP2
belongs to category C1. The ATM then restores the state to
consistency point C1 (9). It further determines that reachable
consistency points CP3 (12) and CP6 (13) belong to the
same consistency category C2 While consistency point CP5
(14) belongs to consistency category C3. Transaction C is
then executed as a corrective transaction, transitioning state
from consistency point CP1 (9) to consistency point CP4
(15), and then Transaction D is executed transitioning state
from consistency point CP4 (15) to consistency point CP6
(13)ian acceptable stateiWhere it commits. A second
alternative Would have been to execute Transaction C as a
corrective transaction, transitioning state from consistency
point CP1 (9) to consistency point CP4 (15) and then
execute Transaction E transitioning state from consistency
point CP4 (15) to consistency point CP5 (14)ianother
acceptable stateiWhere it commits.

FIG. 3: TransactionAbegins to use resource sets RSO (17)
and RS1 (18), Which are both in a consistent state, at
consistency point CP1 (19). Both transition to durable
consistency point CP3 (20), at Which point Transaction A
noti?es the ATM that it Will not subsequently modify RS1.
Transaction B begins With resource set RS2 (21) in a
consistent state at consistency point CP2 (22) and transitions
it to consistency point CP4 (23). At CP4 Transaction B
noti?es the ATM that it requires resource set RS1 to con
tinue. The ATM transfers (24) both control and the state of
resource set RS1 at CP3 (20) from Transaction A to Trans
action B at consistency point CP4 (23). If no errors occur
subsequently, Transaction A continues, modifying resource
set RSO, transitioning its state from consistency point CP3
(20) to consistency point CP5 (25) and commits. LikeWise,
Transaction B continues in the absence of subsequent errors,
modifying resource sets RS1 and RS0, transitioning from
consistency point CP4 (23) to consistency point CP6 (26)
and commits.

If an undesirable condition E1 (27) occurs in Transaction
A subsequent to consistency condition CP3 (20) and prior to
commit, and after Transaction B has committed or is in
?ight, the ATM simply restores (28) resource set RSO to
consistency condition CP1 (19). If Transaction B has
aborted, the ATM also restores resource set RS1 (18) to
consistency condition CP1 (19). (It is also possible to restore
to consistency condition CP3 (20) and re-run the Work that
affects only RSO; although this is not shoWn in the diagram.)

If an undesirable condition E2 (30) occurs in Transaction
B subsequent to consistency condition CP4 (23) and prior to
commit, and TransactionA has committed or is in-?ight, the
ATM restores (31) resource set RS2 to consistency condition
CP2 (22) and restores (32) resource set RS1 to consistency
condition CP4 (23). If Transaction A is in-?ight, the ATM
also transfers (33) control of resource set RS1 (80) to the
Transaction A context (18). If Transaction A has aborted, it
further restores resource set RS1 (18) to consistency condi

US 7,103,597 B2
13

tion CP1 (19). (Again, it is also possible to restore to
consistency condition CP4 (23) and rerun the Work that
a?fects both resource sets RS1 (80) and RS2 (21), Without
handing control over RS1 (80) back to the Transaction A
context, although this is not shoWn in the diagram.)

FIG. 4: The ATM analyzes and reWrites Transaction D
from the Initial De?nition (on the left hand side) to the
re-structured Enhanced De?nition (on the right hand side).
Directives are inserted regarding favoring (34) (35) and (36),
to assert consistency points (37)(38), and to deallocate
resources (39)(40)(41). The “Read Z” step is performed
earlier (42), thereby optimizing ef?ciency. The “Write Y:Y+
AX” step is also performed earlier (43), thereby enabling
both interim assertion of consistency points (37)(38) and the
early deallocation, after its last use in the transaction, of each
resource (39)(40)(41).

FIG. 5: This shoWs the scheduling of four concurrent
transactions E, F, G, and H. The ATM determines from
dependency information that Transaction E consists of con
sistent groups CG1 (44), CG2 (45), CG3 (46), and CG4 (47),
that Transaction F consists of consistent groups CG5 (48)
and CG6 (49), that Transaction G consists of consistent
groups CG7 (50), CG8 (51), and CG9 (52), and that Trans
action H consists of a single consistent group CG10 (53). It
further determines that CG6 (49) shares a dependency With
consistent groups CG1 (44), CG3 (46), and CG4 (47), CG9
(52) shares a dependency With consistent group CG1 (44),
and that there are no other dependencies among the trans
actions. Transaction H is not in the same con?ict class as E,
F, or G. Given this information, the ATM begins Transac
tions E, F, and H at time tO (54), scheduling consistent
groups CG1 (44), CG5 (48), and CG10 (53) for immediate
and concurrent execution. At time t1 (55) after consistent
group CG1 (44) completes, it schedules consistent groups
CG2 (45), CG3 (46), CG4 (47), and CG7 (50) to run
concurrently. At time t2 (56) after consistent groups CG2
(45), CG3 (46), and CG4 (47) have completed, Transaction
B commits. After consistent group CG7 (50) of Transaction
G completes at time t3 (57), consistent group CG8 (51) is
scheduled to run. Also at time t3 (57) after Transaction B has
committed, consistent group CG6 (49) of Transaction F is
scheduled to run; and then at time t4 (58) the ATM schedules
consistent group CG9 (52) to run. (If Transaction E has
already committed, the ATM can schedule consistent groups
CG8 (51) and CG9 (52) of Transaction G to run concur
rently, although this is not shoWn in the diagram.) Because
Transaction H cannot possibly be in con?ict With Transac
tions E, F, and G, it is permitted to run to completion Without
further scheduling and Without isolation otherWise enforced.
At some time t5 (59) all the transactions Will have completed
and committed.

FIG. 6: The ATM, in the preferred embodiment, contains
all of the subunits referenced in this diagram. Due to the
complexity of potential interconnectivity, Which may be
dynamically rearranged, it is infeasible to display all pos
sible interconnections and hierarchies.
The Parser (60) has responsibility for interpreting or

compiling transaction de?nitions, Which it may receive from
an external source or by reference to a transaction de?nition

stored in the Repository (71) via the Repository Manager
(61). The Parser may forWard interpreted or compiled trans
action de?nitions to the Repository Manager (61) for
deferred execution or to the Execution Manager (62) for
immediate execution. The Execution Manager (62) pro
cesses transactions, allocating and deallocating transaction
contexts, passing directives and instructions to the appro
priate ATM components, and orchestrating transaction

20

25

30

35

40

45

50

55

60

65

14
scheduling, commit, rollback, and rollforWard. The Consis
tency Manager (63) has responsibility for automatic identi
?cation of consistency points and veri?cation of asserted
consistency points. The Correction Processor (64) has
responsibility for correlating abnormal conditions and con
sistency points, either by direct association, or through
condition categories or consistency classes. Based on the
transaction de?nition and possibly a business process de?
nition, it may use various techniques to discover, optimally
select, or create a corrective transaction and submit it to the
Execution Manager (62). The Dependency Manager (65)
has responsibility for interpreting dependency directives,
detecting dependencies, identifying consistent groups based
on dependencies and asserting the corresponding consis
tency points. The Restructuring Processor (66) has respon
sibility for altering the order of transaction steps based on
information from the Repository (71), the Consistency Man
ager (63), and the Dependency Manager (65). The Reposi
tory (71) is also responsible for including internally derived
resource management and consistency directives in the
transaction de?nition. The Resource Manager (67) is
responsible for accessing and updating resources, allocation
management, scheduling, resource isolation, maintaining
cache, and other resource constraints. The Resource Man
ager (67) is also responsible for detecting resource require
ments, implementing resource management directives, and
providing resource management directives to the Restruc
turing Processor (66). The Repository Manager (61) is
responsible for coordinating all stored information, includ
ing dependencies, transaction de?nitions, associations, con
dition classes, consistency categories, subscriptions, and so
on. The Publication/Subscription Manager (68) is respon
sible for processing publication and subscription de?nitions,
detecting publication events, and notifying appropriate sub
scribers of publication events. The Recovery Manager (70)
is responsible for evaluating, selecting, and directing recov
ery options, passing control to the Corrections Processor
(64) if a corrective transaction is selected. The Isolation
Manager (69) interacts With the Resource Manager (67) and
more intensively the Resource Scheduler (72) to ensure the
Isolation Property for every resource and transaction is
correctly maintained, sending constraints and dependency
information as needed to the Publication/ Subscription Man
ager (68) and the Dependency Manager (65).

DETAILED DESCRIPTION OF THE
INVENTION

Businesses Work in an imperfect World, and attempt to
impose their oWn order on events. Constantly in a state of
?ux, they persist in imposing ‘acceptable’ states through the
efforts of all their employees, from the accountants running
yearly, quarterly, Weekly, or even daily accounts, to the
zealous (or indi?ferent) stock clerks managing inventory.
When an error occurs, it is recognized because the result

dilfers from What is expected. Results can dilfer from
expectations in several Ways, including computational
results, resources consumed, catastrophic failures to com
plete the Work, excessive time to complete the Work, and so
on. Typically, the business does not knoW either the explicit
cause of an error or its full impact. For example, it may not
knoW if data Was corrupted (Wrong account number), the
procedure mistakenly performed (9*6I42), or the Wrong
procedure used (multiplied instead of divided). Obviously
errors (including those of timeliness and resource overuse)
must be prevented to the degree possible. Any undesirable
e?fects of errors must be repaired and the desired effects

US 7,l03,597 B2
15

asserted (correctionitraditionally by resubmitting the cor
rected transaction). Furthermore, ?nding out Which error
occurred, and enabling those errors to be tracked, over time
becomes more valuable than merely repairing and correcting
each as it occurs. In this Way the business can discover
Where it needs to focus attention on improving the overall
process and improving its ef?ciency.

OvervieW of the Invention
The present invention is a method, consisting of a coor

dinated set of sub-methods, Which enables ef?cient transac
tion processing and error management. By contrast With
prior approaches, it is extensible to complex transactions
and distributed business environments, and is particularly
Well-suited to business process management. The sub
methods are consistency points, corrective transactions,
transaction relaying, lookaheadbased resource management,
and dependency-based concurrency optimization.

In the preferred embodiment of the present invention, a
system implementing this invention (1) continually transi
tions betWeen automatically-detected stable (i.e. logically
correct and permissibly durable) acceptable states (each is
also knoWn as a ‘consistency point’), ensuring rapid and
minimal recovery efforts for any error; (2) automatically
enables inter-linked, possibly distributed, transactions to
share intermediate Work results at ‘consistency points’
through transaction relaying, moving from one acceptable
state to the next; (3) ef?ciently manages I/O and storage use
by identifying for each transaction (or procedure), in
advance of execution, a set of data, resources, and operations
depended upon by that transaction to move from one con
sistency point to its succeeding consistency point; (4) sched
ules the use of those resources in such a manner as to
improve ef?ciency and concurrency While permitting
dynamic scheduling of unplanned transactions; and (5)
automatically implements repair and corrective efforts
Whenever a mistake is identi?ed.

In an extension of the preferred embodiment, the system
shares resources and data that are touched or handled by
multiple subordinate parts of a complex or distributed trans
action, rather than duplicating the same and letting each part
have its oWn copy, or rather than locking all other parts out
While each particular part operates With that same data
and/ or resources. This ‘overlap’ in effect becomes a WindoW
into the entire business’ processes, a WindoW that moves as
transactions, or parts thereof, successfully and correctly
completeior When an error occurs, the effects are repaired,
and failed Work corrected. Moreover, all that needs to be
maintained during the process of a particular sub-part of the
transaction is the ‘delta save’, that is, the changes since the
knoWn consistency point Which the chain last reached.

In yet a further extension, a system engages in transaction
management by implementing transaction lookahead, or
managing transaction dependencies, or any combination
thereof.

Each of the sub-methods are further detailed and expli
cated below.

1. Consistency Points
Through the course of a transaction, it may happen that

the set of resources enters a consistent state from time to
time. Such a consistent state is referred to as a consistency
point and may be detected automatically by the transaction
manager or some other softWare subsystem, or may be
manually asserted by the user (possibly via program code or
interactive commands). Numerous methods for automatic
detection of consistency exist in the literature and are
Well-knoWn. Consistency points may be durable or non
durable. Durability determines the circumstances under

20

25

30

35

40

45

50

55

60

65

16
Which they may be used. In effect, a consistency point is a
savepoint With the added requirement of consistency and the
optional property of durability. When the system detects a
potentially recoverable error, it can rollback to the consis
tency point by restoring the state as of the consistency point
(exactly as it might to a synchronization point or Were a
savepoint to have been asserted). It may then optionally and
automatically redo the Work that Was subsequently done (by,
for example, reading the log or log buffers) in the hope that
the error Will not recur. This might be the case When, for
example, (1) a deadlock is encountered (in Which case the
consistency point need not be durable) or (2) poWer fails (in
Which case the consistency point must be durable). Numer
ous methods exist for recovery to a synchronization point or
savepoint, and are Well-knoWn. Rollback to a consistency
point Will, in general, be more efficient than rollback to the
beginning of a transaction in a system Which does not
support consistency points.

These examples illustrate some of the value of consis
tency points:

automatic deadlock recoveryiWhen a deadlock is
detected, the usual response is to return control to the
user (or program) With an error message or to select one
of the participating transactions and abort it. With
consistency points, the system can implement an inter
nal retry loop Which makes it very likely that the
deadlock condition Will not recur (for a variety of
reasons). Such an internal retry loop is much more
e?‘icient than one implemented by the user (the usual
approach to deadlock recovery). It is clearly more
e?‘icient than having the system automatically break
deadlocks by the method of picking a “victim” of those
transactions involved, and forcing it to fail, and more
reliable than expecting the correct response to have
been encoded into a program by a programmer.

automated savepointsiSavepoints are established by
manual declaration of the user, either interactively or
through a program, and as an added step in a transac
tion. By contrast, consistency points can be established
by automatic detection that some particular set of one
or more pre-de?ned consistency conditions have been
met. This enables both automatic and manual rollback
to the most recent consistency point.

categories of consistency pointsiUsers (including busi
ness users, system designers and administrators) can
de?ne multiple sets of consistency conditions so that
multiple, different categories of states, each consistent
With respect to a particular set of consistency condi
tions, can be detected and named. Detection can be
automatic and naming can be according to a pre
de?ned naming convention. A consistency point of
category C1 is more general than a consistency point of
category C2 if every consistency point of category C2
also belongs to category C1. Other rules of set theory
apply and can be used to simply testing for consistency
points of one or more categories using methods Well
knoWn to one familiar With the art.

categorized rollbackiBy establishing a relationship
betWeen a type or class of error (based, for example, on
error code) or other detectable condition, and a cat
egory of consistency point (possibly based on name),
the system can then rollback a transaction to an asso
ciated category of consistency point When that error is
detected. If the associated category of consistency point
has not been detected or asserted, traditional error
handling techniques can be used. Because both the
relationship betWeen error type and category of con

US 7,103,597 B2
17

sistency point, and the consistency conditions to be
detection can be changed, the behavior of the system
can be easily maintained. In one embodiment, this can
be done Without the necessity of modifying transaction
processing programs since the relationship and the
consistency conditions can be held in a database (for
example) and determined at program execution time.

commit processingiWhen a transaction commits, the
standard approach is to make the ?nal state of all
affected resources durable. If a transaction contains one
or more durable consistency points, the state of
resources that have not been modi?ed since a consis
tency point involving those resources need not be made
durable during commit processing. This, in effect,
permits commit processing to be spread out over time
and possibly using parallel processing, thereby elimi
nating hotspots and speeding commit processing.

poWer failure recoveryiWhen poWer fails, the usual
response is to enter system recovery processing once it
has been restored. The canonical approach to system
restart of transaction management systems is equiva
lent to ?rst initiating rollback of each transaction
uncommitted at the time of poWer failure, and then to
initiate rollforWard. If the rollback phase for uncom
mitted transactions is to the most recent consistency
point, folloWed by noti?cation to the user as to “Where
they Were” according to system records, the amount of
Work that the system must do in order to restart and
Which the user must then redo, is substantially
decreased. A similar approach can be used for recovery
from certain other types of failure, such as storage
media failures, and incorporating other standard recov
ery mechanisms as appropriate.

Unlike all prior art, the present invention’s use of con
sistency is far more consistent, logical, and poWerful. Most
present-day DBMS products (e.g., IBM’s DB2 or Oracle’s
Oracle 9i) implement only an extremely limited concept of
consistency enforcement, generally knoWn as integrity rule
or constraint enforcement. HoWever, While these products
may verify that the changes made by a transaction are
consistent With some subset of the knoWn integrity rules at
various times (e.g., after each roW is modi?ed, after a
speci?c transaction step is processed, or before transaction
commit), no product currently on the market establishes and
uses internally valid and logically consistent “checkpoints”
(i.e. consistency points) to Which the transaction can recover
(perhaps automatically). Nor do they permit the user to
request the establishment of consistency points, to assert
consistency points (except implicitly and often erroneously
at the end of a transaction), or separate consistency points
from synchronization points (as, for example, betWeen vola
tile memory and durable storage). Other advantages and
uses of consistency points are further detailed beloW as they
interact With other elements of this invention.
By extension, the method of consistency points can be

applied to pseudo-transactions, physical transactions, logical
transactions, and business transactions.

2. Transaction Relaying
Transaction relaying refers to the method of moving the

responsibility for resource isolation and consistency in a
WindoW from transaction to transaction, much like the baton
in the relay race, and permitting sharing of that responsibil
ity under certain conditions (explained beloW). By further
analogy, and for the purpose of explaining transaction relay
ing in its most simpli?ed form, tWo transactions A and B
become like runners in a relay race (football game). The
baton (football) is a resource that A must pass to B Without

20

25

30

35

40

45

50

55

60

65

18
dropping (corruption). A con?icting transaction C is like a
member of the competing team that Would like to acquire
control of the baton (football) from A and B. By passing the
baton Without either runner sloWing doWn (permitting B to
gain access to the resource held by A prior to commit), there
is no opportunity for the competing team to acquire control
(for con?icting transaction C to gain control of, let alone
alter the resource). Furthermore, the entire process is much
more ef?cient than if the runners Were to stop in order to
make the transfer.

Consider a transaction B having either a semantic or
resource dependency (or both) on transaction A. For
example, suppose that a particular business process consists
of transactions A and B, and that there is an integrity rule or
constraint, or a dependency that requires transaction B must
alWays folloW A because it relies upon the Work done by A.
In other Words, some portion of the ?nal state of resources
affected by A (the output of A) is used as the initial state of
resources required by B (the input of B). By the de?nitions
of transaction and consistency point, the ?nal state of A is a
consistency point, even before A commits. Under the usual
approaches We must either (I) accept the possibility that the
?nal state of A is altered by some transaction C before B can
access and lock the required resources (the sequential trans
action scenario), (2) accept the possibility that the state of
resources needed by B is different than the state of those
same resources as perceived by some other transaction

(chained transactions), or (3) run transactions A and B
combined in a distributed transaction, accepting the fact that
all resources touched by either A or B Will be locked until B
completes (the distributed transaction scenario).

Transaction relaying recognizes the fact that A and B may
share the state of the resources that B requires at least as
soon as A enters the ?nal consistency point for those stated
resources and has made that ?nal state durable (assuming
durability is required). Unlike chained transactions, it need
not Wait until A is ready to commit. It need not even Wait
until locks are released. Rather, the transaction manager,
lock manager, or some other piece of relevant softWare
either transfers oWnership of those locks directly to B or
establishes shared oWnership With B (as long as only one
transaction has oWnership of exclusive locks on a resource
at any given time if the ACID properties are desired), and
never releases them for possible acquisition by C. Unlike the
sequential transaction scenario, there is no possibility that C
Will interfere in the execution of B. Unlike the chained
transaction scenario, transaction relaying does not require
transaction A to have committed, the beginning of transac
tion B to be immediately after the commit of transaction A,
the commit of A and begin of B to be atomically combined
in a special operation (indeed, B may already have per
formed Work on other resources), transactions A and B to be
strictly sequential, or transaction B to be the only transaction
that subsumes shared responsibility for resources previously
operated on by transaction A. Unlike the distributed trans
action scenario, resources held by A, but upon Which the
initial state of B does not depend, are released as soon as A
completes and there is no tWo-phase commit overhead.
Unlike split transactions, transaction relaying does not intro
duce arti?cial transaction contexts, can be fully automated
Without sacri?cing consistency, and yet enables collabora
tive transaction processing in Which Work groups can com
municate about the status and intermediate results of their
Work (including negative results).
An extension of the method is to permit transaction B to

have done additional Work on other resources prior to the
consistency point discussed above. Another extension of the

US 7,103,597 B2
19

method is to permit A to do Work on other resources after the
consistency point discussed above. A further extension of
the method is to permit transaction A to do Work after the
consistency point discussed above, so long as no consistent
state on Which transaction B depends is ultimately altered by
transaction A.

Yet another extension of the method is to permit transac
tions other than transaction B to have a similar relationship
to transaction A, involving possibly different resources and
possibly different consistency points. The method preserves
the ACID properties of all transactions as long as no more
than one transaction in effect has responsibility for modi?
cation of a shared resource at any particular time, and that
transaction can rollback the state of those resources to the
most recent durable consistency point in Which they are
involved. If durability is not a recovery requirement (as, for
example, during deadlock recovery), then the consistency
point need not be durable.
By extension, under transaction relaying, if the initial

state of a resource as needed by one or more transactions

including B happens to be an intermediate state of that
resource produced by A, it may be made available to those
transactions long before A commits if the folloWing condi
tions are true (other conditions may enable this as Well): (1)
at most one transaction of those sharing responsibility for
recoverability, isolation, and consistency of resource modi
?es those resources subsequently, (2) the intermediate state
is a consistency point, and (3) the intermediate state is
recoverable (though not necessarily durable). These condi
tions are intended to guarantee that the result of A and B With
transaction relaying around a consistency point is equivalent
to some serializable interleaving of transactions D, E, F, and
G, Where D is the Work that is A does before the consistency
point, E is the Work A does afterward, F is the Work B does
before the consistency point, and G is the Work B does after
the consistency point. Other sets of conditions or rules that
Would produce this result are possible.

Moreover, the intermediate state produced by A could just
as easily have been produced by B (or other speci?c trans
actions) had the instructions to do so been inserted in B (or
those other transactions) at some point prior to that at Which
the intermediate state of A is accessed by B. Transaction
restructuring such as this under transaction relaying may be
used to improve processing ef?ciency and performance. By
further extension, under transaction relaying a group of
transactions can share multiple intermediate states. This may
become important When scheduling subordinate parts of a
complex transaction for the most ef?cient processing; trans
action relaying alloWs a transaction management facility to
balance Work amongst ‘subordinate’ transactions by includ
ing instructions such as those described in all subordinate
transactions (or at least establishing the means for such
inclusion When needed) and then selecting Which of those
subordinate transactions actually perform the Work so as to
promote ef?ciency, either in advance of execution or
dynamically during execution.

In transaction relaying, both A and B share control over
isolation of shared resources. For example, they Would share
oWnership of the locks on the shared resources is locking
Were used to control isolation. Optimally, and in order to
preserve the consistency and isolation properties, bothA and
B must have completed before transactions other thanA and
B perceive locks on those resources to have been released.
If B completes before A, B relinquishes its lock oWnership
and A retains lock oWnership until A completes. If A
complete before B, A relinquishes its lock oWnership and B
retains lock oWnership until B completes. In this Way, both

20

25

30

35

40

45

50

55

60

65

20
A and B (all oWners of the shared resource) must release
locks on shared resources in a manner consistent With the

type of lock held (e.g., share versus exclusive locks) and the
concurrency control mechanism before other transactions
can access the resource. If A completes before B, B has lock
oWnership. If A and B complete simultaneously, or When
ever A and B have both completed, lock oWnership reverts
to the resource manager and so locks are effectively
released. In order to preserve serialiZability, the tWo-phase
locking protocol applies to the shared resource as if a single
transaction Were involved. The usual rules of lock promotion
or demotion apply. Insofar as external transactions (that is,
transactions not involved in sharing the resources in ques
tion via transaction relaying) are concerned, a resource
shared by A and B is locked in the manner Which is most
exclusive of the types of access requested by A and B.
Similar rules may apply to lock scope escalation (e.g., roW
to page) and to transaction relaying involving more than tWo
transactions.
By obvious extension, transaction relaying can be used in

systems that employ non-standard concurrency control
schemes and enforce isolation through mechanisms other
than locking; appropriate adjustment to the speci?c mecha
nism that enforces isolation is then required to permit the
sharing of resources at consistency points.
By extension, transaction relaying enables a transaction

management facility (or other appropriate softWare systems)
to remove redundant operations performed by a group of
transactions and assign those operations to a speci?c trans
action or transactions, thereby improving the overall effi
ciency of the system. Such a facility can determine Which
operations among a group of transactions are redundant
through automatic means Well-knoWn to those familiar With
the art (for example, pattern matching), to be informed of
those redundant operations by some other agent such as a
human individual knowledgeable about the intent of the
transactions in the group, or some combination of the tWo.

Transaction relaying can be extended to arbitrarily com
plex collections of concurrent and interdependent transac
tions, even if those transactions Were running under distinct
transaction managers in a distributed computing environ
ment. In such cases, the means for isolation enforcement
Will typically be distributed, but tWo-phase commit process
ing is not required across those transactions involved in
transaction relaying (although it need not be precluded).
Numerous mechanisms for distributed isolation enforcement
exist and Will be Well knoWn to one familiar With the art.
Indeed, once the method of transaction relaying has been
explained as it applies to tWo transactions (“A” and “B”),
extensions to arbitrarily complex collections of concurrent
and interdependent transactions, including those spread
across a distributed computing environment hoWever geo
graphically dispersed or hoWever many business entities
may be involved, Will be obvious to one trained, competent,
and versed in the art.

By extension, this method of the present invention can be
implemented so that transactions publish their states and/or
consistency conditions at consistency points and permit
other transactions to subscribe to the state of associated
resources. A variety of methods may be used to determine
Which of the subscribing transactions Will gain Write per
mission over the associated resources and in What order. By
further extension, the group of subscribing transactions can
be treated to various methods of concurrency optimiZation,
including the method of dependency based concurrency
optimization described beloW. By extension, the method of

US 7,103,597 B2
21

consistency points can be applied to pseudo-transactions,
physical transactions, logical transactions, and business
transactions.

In another extension of the present invention, a locking
?ag is used to denote the dependency upon each particular
resource (including data elements), and to transfer control
over and responsibility for such to the transaction Which has
yet to attain a consistent state With the same, thereby
allowing intermediate, partial, or distributed transactions to
process and reach completion or acceptable states Without
necessitating the entirety of a complex or distributed trans
action to successfully conclude.

3. Corrective Transactions
Corrective transactions provide an alternative to both

compensation and rollback in circumstances in Which the
desired result of a transaction can be understood as produc
ing a state that meets a particular set of consistency condi
tions. For example, an ATM transfer transaction may have as
its key consistency conditions the crediting of a speci?c
account by a speci?c amount of money, and maintaining a
balance of debits and credits across a set of accounts

(including the speci?ed one).
In the event that an error occurs during transaction

processing, a corrective transaction appropriate to the error
is invoked. Rather than restoring the initial state of a set of
resources as Would either a rollback or a compensating

transaction, a corrective transaction transforms or transitions
the state of the affected set of resources to a ?nal state Which
satis?es an alternative set of consistency conditions (integ
rity constraints and transition constraints). The alternative
set of consistency conditions constrain the ?nal state to one
of possibly many acceptable states and may be, for example,
completely distinct from the initial set or may be a more
general category of consistency conditions. For example,
consider a simple business process consisting of a tWo
prede?ned but parameteriZed transactions, a funds-transfer
transaction (parameteriZed for transfer amount and tWo
account numbers) and a loan transaction (parameteriZed for
loan amount but With ?xed account number). If an attempt
to transfer a speci?ed amount betWeen tWo accounts fails
because of insufficient funds, an automatic corrective trans
action might loan the user the required funds, thereby
expanding the consistency conditions to include an account
not oWned by the user With respect to balancing credits and
debits. In this example, the corrective transaction might be
manually prede?ned by the bank and caused to run as part
of an error handling routine. Similarly, rather than debiting
the explicitly speci?ed account (for example, checking), it
might debit an alternate account (for example, savings or an
investment account).

This method of the present invention replaces the usual
?xed set of consistency conditions With a category of such
sets and invokes an auxiliary set of actions (the corrective
transaction) that Will transform the current state into one that
satis?es some set of consistency conditions belonging to that
category. That is, the traditional concept of the consistency
property for transactions is re?ned such that the options for
achieving a consistent state in the completion of a transac
tion are broadened. For each set of consistency conditions
de?ning the end state of a transaction, each of the other sets
of consistency conditions belonging to its category consti
tute an acceptable set of consistency conditions. This con
cept of acceptable sets of consistency conditions mimics the
real World of business, in Which errors are common and a
strictly pre-determined result of Work is not possible. Rather,
those Who perform Work in a business context strive to
achieve some acceptable result, Where acceptability is deter

20

25

30

35

40

45

50

55

60

65

22
mined by satisfaction of a number of alternative sets of
constraining conditions and is often associated With business
risk and opportunity assessment.

This method is particularly valuable When a set of linked
interdependent transactions is involved and a ?at transaction
model does not apply. For example, a classic problem of this
nature involves the scheduling and booking of a travel
itinerary. It is not uncommon that the ideal routing, carrier,
and timing are unavailable for every segment of a multi
segment itinerary, but that some compromise alternative is
available. Each segment is often reserved and booked via a
separate transaction, and cancellation penalties after more
than a feW minutes may preclude arbitrary rescheduling.
Possible compromises constitute alternative consistency
conditions, possibly ranked by the traveler’s preference. If a
transaction to book a particular segment of the itinerary fails,
a corrective transaction can book an alternative for that
segment. For example, it might involve booking a ?ight to
an airport near the original segment destination and a rental
car With the attendant compromise of less time betWeen
?ights. Similarly, a corrective transaction might cancel a
certain number of already scheduled segments in order to
assert a more viable alternative schedule. The segments to be
cancelled might be selected, for example, based on mini
miZing any negative ?nancial impact on the overall cost of
the itinerary.

Business processes do not alWays lend themselves to such
simple models as those assumed by existing approaches to
transaction processing: often they involve interleaved multi
hierarchies and netWorks. The processes a business uses to
correct for errors do not alWays return the business to a prior
state as is assumed in other approaches to transaction error
handling (it Would be to costly to do so). Rather, the business
is transitioned to some acceptable state and the nature of this
state made available to those portions of the business that
have some dependence upon it. Notice the repeated refer
ence to “some acceptable state” instead of the more familiar
technical notion of a speci?c internally consistent transac
tion end state. Obviously, businesses do not folloW a rigid set
of rules of consistency as a database might. HoWever, it
should be equally obvious that some action Will be taken if
the business is not in an acceptable state. Rather than
ignoring this approach, depending entirely on manual cor
rections (dif?cult if not impossible at today’s transaction
volumes), or insisting that the map must be the territory, the
present invention actively attacks the problem by de?ning
consistent and acceptable states to Which the business pro
cess Will move When it becomes ?aWed, states from Which
it may resume normal transaction management once again.

In a business process, the various constituent and linked
transactions (including pseudo-transactions) often create a
complex netWork of steps With many decision branches and
concurrent sub-processes. Many portions of the process are
designed to handle exception or error conditions. If a trans
action fails, then rollback and redo, or rollback of a trans
action that includes a decision branch, may not be a reason
able option. In particular, such a recovery mechanism Will
often consume so much time or other resources that the
business process is no longer viable. The method of correc
tive transactions requires that one identify a state that Would
have been reachable had a different portion of the process
been activated (that is, a different branch had been taken),
and that satis?es an acceptable set of consistency conditions.
Each such state is designated as an alternative end state. The
failed transaction is then rolled back to the most recent state
for Which a transaction or set of linked transactions (the
corrective transaction) exist that Will transition from the

US 7,103,597 B2
23

consistency point to an alternative end state. This point may
be the current error state (and possibly inconsistent), or it
may be the most recent consistency point. The corrective
transaction is then run.

The method of corrective transactions requires that each
business, logical, or physical transaction submitted to the
system, and Which is to be subject to the bene?ts of the
method, be identi?ed according to the consistency condi
tions that Will be enforced on the set of resources affected by
that transaction or that such consistency conditions be
automatically discoverable by the system. Such consistency
conditions might, for example, be stored conveniently in an
online repository so as to be accessible to the transaction
manager, other appropriate software, or a human individual.
Whenever an error occurs that results in the failure of the
transaction (thereby failing to establish a state among the
preferred ?nal states), the failed transaction is returned to a
recoverable consistency point (the most recent one in the
preferred embodiment). The error is classi?ed (in the pre
ferred embodiment according to the nature of the most
recent consistency point) and the corresponding set of
consistency conditions on the affected resources is estab
lished. A transaction (the corrective transaction) is then
invoked Which Will transform the affected resources from
the state of the most recent consistency point to a state that
most closely approximates the intended state and satisfying
the neW consistency conditions (We refer to these as “accept
able conditions”), assuming that such a transaction exists. In
the event that no such corrective transaction exists, the failed
transaction is then returned to an even earlier consistency
point, and an appropriate corrective transaction invoked.
The process is repeated until an acceptable set of consis
tency conditions is reached. By extension, this iterative
process might be replaced by other techniques Which
achieve an equivalent result, examples of Which are
described beloW.

In one embodiment, the establishment of a target set of
acceptable conditions is determined automatically, for
example by means as diverse as rule-based inference based
on error class, the use of a theorem prover to determine
conditions Which Will permit the transaction to complete, or
a catalog lookup. In another embodiment, the establishment
of acceptable conditions (or equivalently a transaction that
Will produce those conditions) is determined by an interac
tion With a suitably authorized person. One familiar With the
art could easily specify numerous other means to determine
the acceptable conditions based on a combination of class of
error, recoverable consistency points Within the failed trans
action, and consistent states accessible by executing one or
more transactions.

In one embodiment, the determination of the steps in the
corrective transaction (that is, its de?nition) are ?xed in
advance and there is one such transaction for each class of
error. In another embodiment, the steps Which constitute the
corrective transaction (Which themselves might be either
implicit or explicit transactions) are determined automati
cally using, for example, a theorem-prover Which reasons
from the consistency point (initial state as axioms) to a ?nal
state Which meets the acceptable conditions, the steps of the
proof being the steps in the corrective transaction. In an
alternative embodiment, back chaining is used to start from
an arbitrary, potential state that meets the acceptable con
ditions and as de?ned, for example, as part of an overall
business process schema, incorporating steps from a pool of
pre-de?ned steps, operations, or transactions until the state
given as the consistency point Was reached. The incorpo
rated steps in reverse order of discovery then de?ne the steps

20

25

30

35

40

45

50

55

60

65

24
of the corrective transaction. In such an embodiment, both
the failed transaction and the corrective transaction might be
business transactions consisting of ordered activities or
transactions, thus each being portions of a business process,
possibly involving human interaction to accomplish busi
ness activities.

In another embodiment the selection of acceptable con
ditions, acceptable state, and sequence of steps that consti
tute the corrective transaction may be optimiZed using one
or more of a variety of optimiZation techniques (these Will
be Well-knoWn to those familiar With the art) to meet given
optimization goals. For example, the optimiZation goals
might optimiZe for minimum resource usage, shortest execu
tion time, least human interaction required, and the like.
Similarly, the members of the set of acceptable conditions
may be possibly prioritiZed or ordered based on some
arbitrary optimiZation criteria, and subsequently selected as
needed through automated or manual means.

It is Well Within the means of the average professional
skilled in the relevant arts to extend the concept of a
corrective transaction to more complex scenarios involving
multiple transactions of Which is desired some group behav
ior. A common example occurs in practice in the context of
process management and Work?oW. By a process We mean
a collection of interdependent transactions (including pos
sibly business transactions, logical transactions, and pseudo
transactions) that transform the state of a set of resources in
a Well-de?ned though not necessarily strictly deterministic
manner, that manner being identi?ed by a collection of
transition rules (integrity constraints) Which specify the
permissible (partial) orderings of those transactions in time.
Certain connected subsets of these transactions may them
selves have atomic properties though not all of the ACID
transaction properties, and so are considered pseudo-trans
actions. In some embodiments of a process, some or all of
the transactions constituting the process may not be true
transactions in the strict sense of the Word and may be
referred to as tasks, activities, business functions, and the
like. (Indeed, the individual operations of any type of
transaction can be considered to be a process.) For example,
it may be dif?cult in practice to enforce the isolation
property across these transactions: thus, the result of some
transaction deep in the dependent chain (or tree or net) may
in?uence the outcome of some transaction that is not one of
those in the atomic group. For practical reasons (perfor
mance, lack of control, etc.), We may not be able to use
distributed transactions or compensation. Both distributed
transactions and compensation may furthermore be undesir
able simply because they return the process to an initial state
for the atomic group of transactions rather than moving it
forWard to an acceptable state and meeting acceptable
conditions.
The method of corrective transactions permits analysis of

a process schema of Which a failed transaction is a part, the
supplementing of the process as necessary With interactive
input, and determination of a partially ordered set of trans
actions or actions (this set constituting the corrective trans
action) that Will transition from the current state to a state
that is approximatelyiin terms of consistency goalsithe
same as Would have been achieved had all gone Well. HoW
closely the corrected state approximates the one that Would
have resulted is entirely under the control of the system
designer, constrained only by limitations imposed by the
intended application or the real World.
A process often contains multiple alternate paths speci

fying the Work to be done and leading to various states or
conditions satisfying various consistency conditions, the

US 7,103,597 B2
25

alternate paths being selected either singularly or severally
at a branch point in the process. Thus, from a branch point
it may be possible to achieve a certain amount of Work and
an associated acceptable state in multiple Ways, some more
“consistent” or more ideal than others. It may even be able
to achieve exactly the ideal acceptable state by an alternate
path. Such an alternative path constitutes the corrective
transaction. It may involve using different resources, require
doing some Work that Would not otherWise have been done,
require leaving some otherWise desirable Work undone,
require supplementing the process With interactive input,
and so on.

In further extension to the preferred embodiment of this
submethod of the present invention, a cost-bene?t approach
(similar to that sometimes applied to compensatory trans
actions) is used. Traditional compensating transactions are
used When the combined cost of undo folloWed by redo is
relatively small and has minimal impact on the rest of the
system, When there are no context-dependent side-effects
involved, When there are commutable transactions at every
stage, or When an undo folloWed by redo is unlikely to cause
errors in some other portion of the system (given the
resource cost and especially in terms of time delays). Oth
erWise, a corrective transaction is used to transition directly
to an acceptable state Which then need not be the original
target state.

In a further extension of the preferred embodiment of this
submethod of the present invention, this method permits
manual input to de?ne and apply the corrective transaction
to the current state to reach the desired acceptable state.

In a further extension of the preferred embodiment of this
submethod of the present invention, this method uses pre
viously-determined, policy-driven programming imple
menting pre-set rules of the business to derive, from the
difference betWeen the desired acceptable state and the
current but incorrect state the nature of the corrective
transaction, and then automatically applies the corrective
transaction to the current state to reach the desired accept
able state.

In a further extension of the preferred embodiment of this
submethod of the present invention, this method uses meth
ods such as goal-oriented programming or genetic algo
rithms to derive, from the difference betWeen the desired
acceptable state and the current but incorrect state the nature
of the corrective transaction, and then automatically applies
the corrective transaction to the current state to reach the
desired acceptable state.

In one alternative extension of the above further extension
to the preferred embodiment of this submethod of the
present invention, this method uses backWard-propagating
logic (‘back propagation’) to derive, from the difference
betWeen the desired acceptable state and the current but
incorrect state the nature of the corrective transaction, and
then automatically applies the corrective transaction to the
current state to reach the desired acceptable state.

In an alternative extension of the last-named extension of
the present invention, the method uses matrix, linear, or
other algebraic algorithms to calculate the least-cost, high
est-bene?t corrective transaction to the current state to reach
the desired acceptable state, and then automatically applies
the corrective transaction to the current state to reach the
desired acceptable state.

In another alternative extension of the present invention,
the method uses single-element rede?nition algorithms to
calculate the least-cost, highest-bene?t corrective transac
tion to the current state to reach the desired acceptable state,

20

25

30

35

40

50

55

60

65

26
and then automatically applies the corrective transaction to
the current state to reach the desired acceptable state.

In another alternative extension of the present invention,
the method uses any of the above-named techniques to
calculate the corrective transaction to be applied to the
current state, but only attempts to satisfy the minimally
acceptable set of conditions When attempting to derive the
corrective transaction.

In another alternative extension of the present invention,
the method uses any of the above-named techniques to
calculate Which corrective transaction Will reach the closest
possible alternative end state to the minimally acceptable
consistent state, applies the corrective transaction, and then
reports the remaining difference for manual implementation
of the ?nal step to reach said minimally acceptable consis
tent state.

By extension, the method of consistency points can be
applied to pseudo-transactions, physical transactions, logical
transactions, and business transactions.

4 Lookahead-based Resource Management
Existing resource management methods do not take into

account available information about either the operations
and resources involved in a transaction, or the transactions
(and therefore the resources) involved in a business process.
Thus, for example, if a ?rst step involves a request to read
a data resource and a subsequent step involves a request to
modify that same data resource, the probability of that data
resource being found in cache is not in?uenced by any
determination that the subsequent step Will or Will not
require that data resource. Some DBMS products attempt to
keep all data resources, once accessed, in cache (or some
other high speed storage). Various algorithms may be used
for determining When cache, or some portion thereof, can be
overWritten (for example, a least recently used algorithm and
its many variants). Other DBMS products may in?uence the
probability that certain data resources Will be kept in cache
for a longer time based on statistical patterns of access. For
example, certain types of requests involve sequential read
ing of large amounts of data resources and it makes sense to
“pre-fetch” the next group of data in the expectation that the
sequential reading Will continue. As another example, cer
tain types of cursor activity in a relational DBMS strongly
suggests that the data resource initially read Will be subse
quently updated, as With SQL requests of the form OPEN
CURSOR . . . FOR UPDATE None of these methods

has the advantages of predetermining the need for resources.
Lookahead-based resource management is a submethod

of the present invention that enables optimiZed automation
and execution of a transaction or group of transactions,
particularly feasible and appropriate for complex transac
tions as de?ned above. This is accomplished by making
some or all resources (such as data or other resources) that
Will subsequently be used in processing a transaction or
group of transactions explicitly knoWn to the softWare
responsible for processing said transaction or group of
transactions in advance of the need to execute said transac
tion or group of transactions. The optimiZed management of
those resources needed to process the transaction or group of
transactions, and possibly other resources, is enabled by
means to inform the softWare responsible for processing
and/or optimiZation (the ‘Transaction Process’) of said
resources either by directive or by inference in association
With the de?nition of the request for said processing. This is
done by making the de?nition of one or more steps in a
transaction (or group of transactions) knoWn by one of
several means to the Transaction Process in advance of the
request to process said step or steps. From such an advance

US 7,103,597 B2
27

de?nition, the Transaction Process can infer the resources
necessary to perform said step or steps. Alternatively, and as
a means of further ef?ciency, the originator of the request
de?nition (Whether a human, program, or machine) can
incorporate the identi?cation of the resources directly in the
de?nition. As a means of yet further e?iciency, the originator
can include Within the request de?nition directives that
instruct the Transaction Process as to hoW to optimally
manage resources in anticipation of steps of a transaction or
group of transactions.

In the preferred embodiment of this submethod, the entire
transaction de?nition is made knoWn to the Transaction
Process in advance of the initial request to begin processing
that transaction (possibly by name or some other transaction
identi?er). The de?ner of the transaction identi?es at trans
action de?nition-time the data resources that should be
highly favored for cache retention, at What step to begin such
favoring, and at What step to remove or reduce that favoring.
As a further e?iciency, these identi?cations may be aided
through automated techniques such as monitoring the use of
resources While the transaction is being run, thereby iden
tifying those resources and determining at Which points
particular resources are no longer required. In this embodi
ment, these resources are accessed once and then maintained
in cache until the last step that needs said resources. In the
event that there is insufficient cache, other secondary meth
ods of cache management may then be used. As a further
efficiency, resources are acquired and released at consistency
points, thereby reducing the likelihood that an error or
rollback condition Will force resources to be released. Thus,
as a speci?c example, a transaction containing a step to read
some data followed, perhaps With intervening steps, by a
step to modify that same data might be prede?ned as a stored
procedure (for example) and invoked by name. FolloWing
the transaction de?nition, the Transaction Process marks the
data read (as a consequence of the ?rst step) to be highly
favored for retention in cache until the second step com
pletes. The cache management algorithms used by the
Transaction Process (Well knoWn to those familiar With the
art) are augmented to give cache preference to data so
marked in an obvious manner. In another embodiment, the
Transaction Process identi?es the resources needed by each
step of the transaction automatically, and further identi?es
Which resources Will be needed multiple times, and at What
point those resources may be released.

In another embodiment, the Transaction Process further
optimiZes processing by pre-allocating cache, storage space,
locks, or other resources based on advance knoWledge of
one or more of the steps in the transaction. In another
embodiment, the Transaction Process may alter the order of
execution of the steps in such a manner such that the
intended meaning of the transaction is not altered, but
resource management and possibly performance is opti
miZed, as for example, pre-reading all data in such a manner
as to reduce disk I/O, to improve concurrency, or improve
parallel processing. Other similar and numerous optimiZa
tions that become possible When one or more of the steps of
a transaction are knoWn in advance of the need to process
those steps Will be readily apparent to one familiar With the
art.

In another embodiment, the de?nitions of a group of
transactions necessary to process a particular application are
stored in a repository. When a request is made to run the
application, the Transaction Process looks up the de?nition
of the transactions pertaining to said application, including
all the steps in each transaction. The Transaction Process
then determines the resources necessary to perform each

20

25

30

35

40

45

50

55

60

65

28
step, determining at Which step said resources must be ?rst
acquired, at Which step they Will last be used, and at Which
step they can be ?rst released. (In an alternative embodi
ment, the repository also contains identi?cation of all
resources necessary to perform those steps, said resources
having been previously identi?ed either by softWare or
human means. In yet another alternative embodiment, the
repository also contains the relative time of said ?rst acqui
sition, ?nal use, and ?rst possible release of each required
resource.) The Transaction Process then applies any of
numerous optimiZation methods Well-knoWn or accessible
to one familiar With the art to optimiZe management of
resources in its environment including, for example, data
caching, lock management, concurrency, parallelism, and
the like.

5 Dependency-based Concurrency Optimization
The method of dependency-based concurrency optimiZa

tion enables a scheduling facility to restructure the steps or
operations in a collection of one or more transactions so as

to optimiZe concurrency and ef?ciency. By restructuring We
mean changing either the order or the context of execution
of transactions, steps, or groups of steps so as to be different
from that order or context in Which those transactions, steps,
or groups of steps Were submitted. The purpose of this
method of “static scheduling” is to determine Which trans
actions can absolutely be run together Without interference,
not Which ones cannot. If there is doubt, traditional dynamic
scheduling can be used. Dependency-based concurrency
optimiZation is an improvement upon traditional transaction
classes and traditional con?ict graph analysis in that it
provides a neW means to determine dependencies and to
respond to them using transaction restructuring. By aug
menting the de?nition of a transaction (or group of trans
actions) With the dependencies among steps or groups of
steps of said transaction and its consistency points, Whether
by human or computer means, the identi?cation of Which
steps must be performed in Which order can be determined
using means Well-knoWn to those familiar With the art,
including manual means. This information enables a com
puter system capable of parallel or concurrent processing to
perform those steps or groups of steps Which satisfy certain
criteria to be performed in parallel or in an order different
from the order in Which they are submitted, and possibly at
the discretion of an optimiZer component. In particular, steps
or groups of steps Which can optionally be performed in
parallel or in a different order are those that (1) have no
mutual dependencies and (2) are not dependent on any other
steps that have not yet been performed. Said dependencies
information and said consistency point information may be
supplied by any of a number of means. For example, each
dependence betWeen every pair of steps might be supplied as
a simple instruction “(1,2), (1,3)”, meaning that step 2
depends on step 1 and step 3 depends on step 1. Altema
tively, the entire set of partially ordered dependencies might
be supplied as a single data structure consisting of, for
example, a linked list of trees With each tree specifying
dependencies (a ‘dependency tree’), the linked list simply
being one possible means of collecting the dependency
trees. Similarly, steps can be grouped together such that they
have no dependencies With any steps not in the group and
such that, if they begin execution on resources that are in a
consistent state, then those resources are left in a consistent
state When that group of steps complete, such a grouping
being knoWn as a ‘consistent group’. A consistent group
bounded by durable consistency points satis?es the formal
de?nition of a transaction, albeit an implicit transaction. For
example, if steps 1, 2, and 3 form such a group of steps

