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ADAPTIVE TRANSACTION MANAGER FOR 
COMPLEX TRANSACTIONS AND BUSINESS 

PROCESS 

BACKGROUND OF THE INVENTION 

Atransaction can be de?ned as a set of actions on a set of 

resources or some subset thereof, said actions including 
changes to those resources. The initial state of a set of 
resources that Will be changed by a transaction is de?ned as 
being consistent, and so either implicitly or explicitly satisfy 
a set of consistency conditions (a.k.a. constraints or integrity 
rules). Each particular transaction includes one or more 
operations that may alter the resources (eg addition, sub 
traction, selection, exchange, or transformation). Once 
de?ned, the transaction creates a delimitible set of changes 
from initial conditions. Each change to the resources (short 
of the ?nal change) creates an intermediate state of those 
resources, Which often are not intended to be accessible to 
other transactions. 
Under such an implementation, each transaction operates 

on the set of resources in an initial state and, after any 
operations performed by the transaction, leaves the set of 
resources in a ?nal state. Thus a transaction may be vieWed 
as a means of transforming a set of resources from an initial 
consistent state to a ?nal consistent state (possibly, but 
generally not the same as the initial). 

Transaction processing is subject to multiple dif?culties. 
A transaction may use resources inef?ciently. Transactions 
may fail to complete operations as designed. Errors may 
cause the ?nal state to be inconsistent. Transactions may 
execute too sloWly. Such difficulties can be handled manu 
ally if the environment is simple enough. Automated or 
semi-automated means (as supplied, for example, by a 
transaction management facility) are required in more 
sophisticated situations. 
An environment in Which transactions operate is often 

subject to a transaction management facility, often referred 
to simply as a “transaction manager.” The responsibility of 
a transaction manager is to ensure the initial and ?nal states 
are consistent and that no harmful side effects occur in the 
event that concurrent transactions share resources (isola 
tion). A transaction manager typically enforces the isolation 
of a speci?c transaction using a default concurrency control 
mechanism (e.g., pessimistic or optimistic). If a condition 
such as an error occurs before the ?nal state is reached, it is 
often the responsibility of a transaction management facility 
to return the system to the initial state. This sort of auto 
mated transaction processing lies behind the greatest volume 
of ?nancial and commercial transactions extant in modern 
society. 
Automated transaction processing, both With and Without 

transaction management facilities, has been designed tradi 
tionally With an unspoken assumption that errors are excep 
tional. The programming, both its design and coding, 
focuses on implementing transactions in a near-perfect 
World Where it is permissible to simply start over and redo 
the Work if anything goes Wrong. Even if this Were to model 
accurately the majority of automated commercial transac 
tions, it Would not re?ect the entirety of any business’s real 
World experience. In the real World, eighty percent or more 
of the management effort and expertise is about handling 
exceptions, mistakes, and imperfections. In automated trans 
action processing, error recovery mechanisms are usually 
seen as an afterthought, a ?nal ‘check-box’ on the list of 
features and transactions that can be handled (if all goes 
perfectly). 
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2 
A nai've approach to the implementation of complex 

automated transaction processing systems maintains that the 
system resulting from integrating (via transactional messag 
ing) a set of applications that already have error recovery 
mechanisms Will itself recover from errors. Experience and 
careful analysis have shoWn that nothing could be further 
from the truth. As more and more business functions are 
integrated, the problems of automated error recovery 
become increasingly important and complex. Errors can 
propagate just as rapidly as correct results, but the conse 
quences can be devastating. 
As more and more business functions are integrated, the 

problems of automated error recovery and resource man 
agement become increasingly important. It’s only natural 
that many of the systems that a business automates ?rst are 
deemed by that business to enable the execution of its core 
competencies, Whose completion is ‘mission critical’. Auto 
mation demands the reliability We associate With transaction 
management if error recovery is to be robust. With each 
success at automating a particular business transaction, the 
value of connecting and integrating disparate automated 
transactions increases. Separate transactions, each of them 
simple, When connected become a complex transaction. 
With each integrative step, the need for acceptable error 
recovery becomes ever more important. 

Traditional approaches to automated transaction manage 
ment emphasiZe means to guarantee the fundamental prop 
erties of a properly de?ned or ‘formal’ transaction, Which are 
atomicity, consistency, isolation, and durability. These prop 
erties are usually referred to by their acronym, ACID. 
Transactions, especially if complex, may share access to 
resources only under circumstances that do not violate these 
properties, although the degree to Which transaction man 
agement facilities strictly enforce the isolation property is 
often at the discretion of the user. 

It is not uncommon to refer to any group of operations on 
a set of resources (i.e., a unit of Work) as a transaction, even 
if they do not completely preserve the ACID properties. In 
keeping With this practice, We Will use the term transaction 
Without a qualifying adjective or other modi?er When refer 
ring a unit of Work of any kind Whether formal or not. We 
Will use the quali?ed term pseudo-transaction When We Want 
to refer speci?cally to a unit of Work that does not preserve 
all of the ACID properties, although it may preserve some of 
them. Pseudo-transactions exist for a variety of reasons 
including the dif?culty of proper transaction design and 
enforcement, incomplete knoWledge of consistency rules, 
attempts to increase concurrency at the expense of decreased 
isolation, attempts to increase performance at the expense of 
atomicity, and so on. 
The ACID properties lead to a very speci?c behavior 

When one or more of the elements that compose a transaction 
fail in a manner that cannot be transparently recovered (a 
so-called “unrecoverable error”): the atomicity property 
demands that the state of the resources involved be restored 
so that it is as though no changes Whatsoever had been made 
by the transaction. Thus, an unrecoverable error alWays 
results in transitioning to the initial state (i.e., the initial state 
being restored), the typical process for achieving this being 
knoWn as “rollback.” An alternative method of restoring the 
initial state is to run an “undo” or “inverse” transformation 

knoWn as a compensating transaction (discussed in more 
detail beloW). This of course presumes that for such man 
dated compensating transactions, for every error it is pos 
sible to ?rst identify the class of error, then most suitable 
compensating transaction, and ?nally to implement that 
compensating transaction. A problem With the current 
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approach to enforcing atomicity is that viable Work is often 
Wasted When the initial state is recovered. A second problem 
is that transactions dependent on a failed transaction cannot 
begin until the failed transaction is resubmitted and ?nally 
completes, thereby possibly resulting in excessive process 
ing times and perhaps ultimately causing a failure to achieve 
the intended business purpose. 

The consistency property guarantees the correctness of 
transactions by enforcing a set of consistency conditions on 
the ?nal state of every transaction. Consistency conditions 
are usually computable, Which means that a softWare test is 
often executed to determine Whether or not a particular 
consistency condition is satis?ed in the current state. Thus, 
a correctly Written transaction becomes one Which, When 
applied to resources in a ?rst consistent state, transforms 
those resources into a second (possibly identical) consistent 
state. Intermediate states, created as the component opera 
tions of a transaction are applied to resources, may or may 
not satisfy a set of consistency conditions and so may or may 
not be a consistent state. Aproblem With this approach is that 
consistency must be either cumulative during the transac 
tion, or else enforced at transaction completion. In most 
cases, transactions are assumed to be Written correctly and 
the completion of a transaction is simply assumed to be 
su?icient to insure a consistent state. This leads to a further 
problem: the interactions among a collection of transactions 
that constitute a complex transaction may not result in a 
consistent state unless all consistency rules are enforced 
automatically at transaction completion. 

For complex transactions that share resources, the isola 
tion property further demands that concurrent or dependent 
transactions behave as though they Were run in isolation (or 
Were independent): that is, no other transaction can have 
seen any intermediate changes (there are no “side effects”) 
because these might be inconsistent. The usual approach to 
ensuring the isolation property is to lock any resource that is 
touched by the transaction, thereby ensuring that other 
transactions cannot modify any such resource (a share lock) 
and cannot access modi?ed resources (an exclusive lock). 
With regard to resource management, locking is used to 
implement a form of dynamic scheduling. The most com 
monly used means for ensuring this is implementing the rule 
knoWn as “tWo-phase locking” Wherein While a transaction 
is processing, locks on resources accessed by that transac 
tion are acquired during phase one and are released only 
during phase tWo, With no overlap in these phases. Such an 
implementation guarantees that concurrent or dependent 
transactions can be interleaved While preserving the isola 
tion property. A problem With this approach is that it 
necessarily increases the processing time of concurrent 
transactions that need to access the same resources, since 
once a resource is locked, it may not be modi?ed by any 
other transaction until the locking transaction has com 
pleted. Another problem due to this approach is that it 
occasionally creates a deadly embrace or deadlock condition 
among a group of transactions. In the simplest case of the 
group consisting of only tWo transactions, each of the tWo 
transactions Wait inde?nitely for a resource locked by the 
other. Deadlock conditions can arise in complex Ways 
among groups of more than tWo transactions. Other 
approaches to maintaining the isolation property include 
optimistic concurrency (such as time stamping) and lock or 
con?ict avoidance (such as static scheduling via transaction 
classes or con?ict graphs, nested transactions, and multi 
versioning). Various caching schemes have been designed to 
improve concurrency by minimiZing the time required to 
access a resource, While respecting a particular approach to 
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4 
enforcing the isolation property. Each of the existing 
approaches to enforcing isolation, and the associated tech 
niques and implications for resource management, fails to 
meet the needs imposed by complex, possibly distributed, 
business transactions. 

If no error occurs, the completion of the transaction 
guarantees not only a consistent state, but also a durable one 
(the durability property) through a process knoWn as “com 
mit.” The step in a transaction at Which a “commit” is 
processed is knoWn as the commit point. The durability 
property is intended to guarantee that the speci?c result of a 
completed transaction can be recovered at a later time, and 
cannot be repudiated. Ordinarily, the durability property is 
interpreted as meaning that the ?nal state of resources 
accessed by a transaction is, in effect, recorded in non 
volatile storage before con?rming the successful completion 
of the transaction. Usually, this is done by recording some 
combination of resource states, along With the operations 
that have been applied to the resources in question. The 
softWare that handles this recording is called a resource 
manager. 
A variant of the commit point, in Which a user (possibly 

via program code) asserts to the transaction manager that 
they Wish to make the then current state recoverable and may 
subsequently Wish to rollback Work to that knoWn state, is 
knoWn as a savepoint. Because savepoints are arbitrarily 
de?ned, they need not represent a consistent state. Further 
more, the system Will return to a speci?c savepoint only at 
the explicit request of the user. Typically, savepoints are not 
durable. Savepoints cannot be asserted automatically by the 
system except in the most rudimentary fashion as, for 
example, after every operation or periodically based on 
elapsed time or quantity of resources used. None of these 
approaches enable the system to determine to Which save 
point it should rollback. 
When the elements of a transaction are executed (Whether 

concurrent or sequential) under multiple, independent 
resource managers, the rollback and commit processes can 
be coordinated so that the collection behaves as though it 
Were a single transaction. In essence, the elements are 
implemented as transactions in their oWn right, but are 
logically coupled to maintain ACID properties to the desired 
degree for the collection overall. Such transactions are called 
distributed transactions. The usual method for achieving this 
coordination is called tWo-phase commit. Unfortunately, this 
is an inef?cient process Which tends to reduce concurrency 
and performance, and cannot guarantee coordination under 
all failure conditions. Under certain circumstances, a system 
failure during tWo-phase commit can result in a state that is 
incorrect and that then requires di?icult, costly, and time 
consuming manual correction during Which the system is 
likely to be unavailable. As With single transactions, com 
pensating transactions can sometimes be used to restore the 
initial state of a collection of logically coupled transactions. 
In such cases, it may be necessary to run special compen 
sating transactions that apply to the entire collection of 
transactions (knoWn as a compensation sphere Whether or 
not the collection is a distributed transaction). 

There are numerous optimiZations and variations on these 

techniques, including split transactions, nested transactions, 
and the like. In practice, all these approaches have several 
disadvantages (and differ from the present invention): 

poor concurrency due to locking is common; 
the cost of rollback, folloWed by redoing the transaction, 

can be excessive; 
the conditions of consistency, isolation, and durability are 

tightly bound together; 
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logically dependent transactions must either (a) be run 
sequentially With the possibility that an intervening trans 
action Will alter the ?nal state of the ?rst transaction before 
the second transaction can take over, or (b) be run together 
as a distributed transaction, thereby locking resources for a 
much longer time and introducing tWo-phase commit per 
formance and concurrency penalties; 

there is signi?cant overhead in memory and processing 
costs on already complex transactions; 

the errors Which are encountered and identi?ed are not 

recorded (Which can complicate systematic improvement of 
a system); 

it is often undesirable in a business scenario to return a set 
of resources to some prior state, especially When a partially 
ordered set of interdependent transactions (i.e., a business 
process) has been run; 

it is not alWays possible to de?ne a compensating trans 
action for a given transaction, and the best compensating 
transaction often depends on context; 

business transactions may result in very long times from 
start to completion, and may involve many logically coupled 
transactions, possibly each running under separate transac 
tion or resource managers; and, ?nally, 

the transaction manager Will not be able to compensate for 
or recover from certain context-dependent, external actions 
that affect resources external to the resource manager. 

Transactions can be classi?ed broadly into three types, 
With corresponding quali?ers or adjectives: physical, logi 
cal, and business. A physical transaction is a unit of recov 
ery; that is, a group of related operations on a set of 
resources that can be recovered to an initial state as a unit. 

The beginning (and end) of a physical transaction is thus a 
point of recovery. A physical transaction should have the 
atomicity and durability properties. A logical transaction is 
a unit of consistency; that is, a group of related operations 
on a set of resources that together meet a set of consistency 
conditions and consisting of one or more coordinated physi 
cal transactions. The beginning (and end) of a logical 
transaction is a point of consistency. In principle, logical 
transactions should have the ACID properties. A business 
transaction is a unit of audit; that is, a group of related 
operations on a set of resources that together result in an 
auditable change and consisting of one or more coordinated 
transactions. If, as is the ideal construction, each of these 
component transactions are logical transactions, business 
transactions combine to form a predictable, Well-behaved 
system. The beginning and end of a business transaction are 
thus audit points, by Which We mean that an auditor can 
verify the transaction’s identity and execution. Audit infor 
mation obtained might include identifying the operations 
performed, in What order (to the degree it matters), by 
Whom, When, With What resources, that precisely Which 
possible decision alternatives Were taken in compliance With 
Which rules, and that the audit system Was not circumvented. 
Business transactions can be composed of other business 
transactions. Time spans of a business transaction can be as 
short as microseconds or span decades (e.g., life insurance 
premium payments and eventual disbursement Which must 
meet the consistency conditions imposed by laW and policy). 

The ef?ciency, correctness, and auditability of automated 
business transactions have a tremendous in?uence on a 

business’ pro?tability. As transaction complexity increases, 
the impact of inefficiencies and errors increases combinato 
rially. 

There are at least four general classes of Ways that 
transactions can be complex. First, a transaction may 
involve a great deal of detail in its de?nition, each step of 
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6 
Which may be either complex or simple, and may inherently 
require considerable time to process. Even if each individual 
step or operation is simple, the totality of the transaction 
may exceed the average human capacity to understand it in 
detailifor example, adding the total sum of money paid to 
a business on a given day, When the number of inputs are in 
the millions. This sort of complexity is inherently addressed 
(to the degree possible) by automation, and by folloWing the 
Well-knoWn principles of good transaction design. 

Second, a transaction may be distributed amongst mul 
tiple, separate environments, each such environment han 
dling a sub-set of the total transaction. The set of resources 
may be divisible or necessarily shared, just as the processing 
may be either sequential or concurrent, and may be depen 
dent or independent. Distributed transactions inherently 
impose complexity in maintaining the ACID properties and 
on error recovery. 

Third, a transaction may be comprised of multiple, linked 
transactionsifor example, adding all of the monies paid in 
together, adding all of the monies paid out together, and 
summing the tWo, to establish a daily net cash?oW balance 
for a company. Such joined transactions may include as a 
sub-transaction any of the three complex transactions (in 
cluding other joined transactions, in recursive iteration). 
And, of course, linked transactions may then be further 
joined, theoretically ad in?nitum. Each sub transaction is 
addressed as its oWn transaction, and thus is handled using 
the same means and de?nitiveness. Linked transactions can 

become extremely complex due to the many Ways they can 
be interdependent, thus making their design, maintenance, 
and error management costly and their use risky. Tremen 
dous care must be taken to keep complexity under control. 

Fourth, and last, a transaction may run concurrently in a 
mix of transactions (physical, logical, business, and pseudo). 
As the number of concurrent transactions, the number of 
inter-dependencies, or the speed of processing increase, or 
as the available resources decrease, the behavior of the 
transaction becomes more complex. Transaction managers, 
careful transaction design, and Workload scheduling to avoid 
concurrency are among the methods that are used to manage 
this type of complexity, and provide only limited relief. Part 
of the problem is that the group behavior of the mix becomes 
increasingly unpredictable, and therefore unmanageable, 
With increasing complexity. 
A business process may be understood as consisting of a 

set of partially-ordered inter-dependent or linked transac 
tions (physical, logical, business, and pseudo), sometimes 
relatively simple and sometimes enormously complex, itself 
implementing a business transaction. The How of a business 
process may branch or merge, can involve concurrent activi 
ties or transactions, and can involve either synchronous or 
asynchronous ?oWs. Automated business process manage 
ment is rapidly becoming the principal means of enabling 
business integration and business-to-business exchanges 
(e.g., supply chains and trading hubs). 
Knowledge of both the internal logical structure of trans 

actions and the interrelationships among a group of trans 
actions is often represented in terms of an interconnected set 
of dependencies. TWo types of dependency are important 
here: semantic and resource. If completion of an operation 
(or transaction) A is a necessary condition for the correct 
completion of some operation (or transaction) B, B is said to 
have semantic dependency on A. If completion of an opera 
tion (or transaction) T requires some resource R, transaction 
T is said to have a resource dependency on the resource R. 
Resource dependencies become extremely important to the 
ef?ciency of transaction processing, especially if the 
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resource cannot be shared (that is, if a principle of mutual 
exclusion is either inherent or enforced). In such cases, 
transactions (or operations) that depend on the resource 
become serialiZed on that resource, and thus, transactions 
that require the resource depend on (and Wait for) the 
completion of transaction that has the resource. 

Dependencies are generally depicted via a directed graph, 
in Which the nodes represent either transactions or resources 
and arroWs represent the dependency relationship. The 
graph that represents transactions that Wait for some 
resource held by another transaction, for example, is called 
a “Wait graph.” Dependency graphs may be as simple as a 
dependency chain or even a dependency tree, or may be a 
very complex, and non-?at network. 

The value of successfully managing complexity through 
automated means groWs as the transactions being managed 
become more complex, as this uses computeriZation’s prin 
cipal strength: the capacity for managing tremendous 
amounts of detail, detail that Would certainly overWhelm any 
single human Worker, and threaten to overWhelm a human 
organiZation not equipped With computer tools. 

Unfortunately, the cost of any error that may propagate, 
for example, doWn a dependency chain of simple transac 
tions, or affect a net of distributed transactions, also 
increases. Moreover, the cost of identifying possible sources 
of error increases as the contextual background for a com 

plex transaction broadens, as all elements, assumptions, and 
consequences of particular transition states that may be 
visited While the transaction is processing must be examined 
for error. One certainty is that the laW of unintended con 
sequences operates With harsh and potentially devastating 
impact on program designers and users Who blithely assume 
that their processes Will alWays operate exactly as they are 
intended, rather than exactly according to What they are told 
(and sometimes more telling, not told) to do. 

Error-handling for complex transactions currently oper 
ates With a bias toWards rescinding a ?aWed transaction and 
restoring the original starting state. Under this approach, 
only When a transaction has successfully and correctly 
completed is the computer program granted permission to 
commit itself to the results and permanently accept them. If 
an error occurs, then the transaction is rolled back to the 
starting point and the data and control restored. This “either 
commit or rollback” approach imposes a heavy overhead 
load on complex transaction processing. If the complex 
transaction is composed of a chain of single, simpler trans 
actions, then the entire chain must be rolled back to the 
designated prior commit point. All of the Work done betWeen 
the prior commit point and the error is discarded, even 
though it may have been valid and correct. If the complex 
transaction is a distributed one, then all resources used or 
affected by the transaction must be tracked and blocked from 
other uses until a transaction has successfully attained the 
next commit point; and When a single part of the entire 
distributed transaction encounters an error, all parts (and the 
resources used) must be restored to the values established at 
the prior commit point. Again, the Work that has been 
successfully performed, even that Which is not affected by 
the error, must be discarded. With linked transactions or any 
mix involving possibly interdependent pseudo-transactions, 
no general solution to the problem of automated error 
recovery has heretofore been presented. 

Furthermore, the standard approach treats all transactional 
operations as identical. Operations, hoWever, differ as to 
their reversibility, particularly in computer operations. Addi 
tion of Zero may be reversible by subtracting Zero. But 
multiplication by Zero, even though the result is boring, is 
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8 
not exactly reversible by division by Zero. Non-commutable 
transactions are not differentiated from commutable ones, 
nor do they have more stringent controls placed around their 
inputs and operation. 
A second method currently used for error-handling in 

complex transactions is the application, after an error, of a 
pre-established compensatory mechanism, also called (col 
lectively) compensating transactions as noted above. This 
presumes that all errors experienced can be predetermined, 
?t into particular categories, and a proper method of cor 
rection devised for each category. Using compensating 
transactions introduces an inherent risk of unrecoverable 
error: compensating transaction may themselves fail. 
Dependence entirely on compensating transactions risks the 
imposition of a Procrustean solution on a correct transaction 
that has been mistakenly identi?ed as erroneous, or even on 
an erroneous transaction Where the correction asserted 
becomes Worse than the error. 

Inherent in the use of compensating transactions is an 
assumption that each individually de?ned transaction has a 
matching transaction (the “compensating transaction”) that 
Will “undo” any Work that the original transaction did. When 
transactions are treated in isolation or are applied sequen 
tially, it is pretty easy to come up With compensating 
transactions. All that is needed is the state of the system 
saved from the beginning of the transaction and a function 
to restore that state. (In essence, this is hoW one recovers a 
?le using a backup copy. All that is lost is the intermediate 
correct stages betWeen preparation of the backup and the 
occurrence of the error.) When transactions become inter 
leaved, this simplistic notion of a compensating transaction 
no longer Works and the implementation a bit trickier. In 
fact, a compensating transaction may not even exist for 
certain transactions. The compensating transaction may be 
selected and applied automatically by the transaction man 
ager. Still, the process is much the same: the system is 
ultimately returned to an earlier state or its equivalent. 
Automated support for compensating transactions 

requires that, for each transaction, a corresponding compen 
sating transaction be registered With an error management 
system so that recovery can take place automatically and 
consistently. The rules for using compensating transactions 
become more complex as the transaction model departs 
further from the familiar “?at” model. Formally, compen 
sating transactions should alWays return a system to a prior 
state. If multiple systems are recovered, they are all recov 
ered to prior states that share a common point in time. If the 
atomic actions that make up a transaction can be done in any 
order, and if each of these has an undo operation, then such 
a compensating transaction can alWays be de?ned. Three 
guidelines have been published (McGoveran, 2000): (1) Try 
to keep the overall transaction model as close as possible to 
the traditional “?at” model or else a simple hierarchy of 
strictly nested transactions. (2) Design the atomic actions so 
that order of application Within a transaction does not matter. 
(3) Make certain that compensating transactions are applied 
in the right order. 
A transaction logically consists of a begin transaction 

request, a set of steps or operations, each typically (though 
not necessarily) processed in sequential order of request and 
performing some manipulation of identi?ed resources, and a 
transaction end request (Which may be, for example, a 
commit, an abort, a rollback to named savepoint, and the 
like). Because the state of the art typically processes each 
step in the order received, the management of affected 
resources is largely cumulative rather than either predeter 
mined or predictive, even When the entire transaction is 
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submitted at one time. Resource management, and in par 
ticular the scheduling of both concurrent transactions and 
the operations of Which they are composed, may be either 
static or dynamic. Static scheduling uses various techniques 
such as con?ict graphs to determine in advance of execution 
Which transactions and operations may be interleaved or run 
concurrently. Dynamic scheduling uses various techniques 
such as locking protocols to determine at execution time 
Which transactions and operations may be interleaved or run 
concurrently. 

SUMMARY OF THE INVENTION 

As outlined above, the usual interpretation of the ACID 
properties introduces a number of dif?culties. The current 
interpretation of the atomicity property has resulted in an 
approach to error recovery that is costly in terms of both 
time and other resources in that it requires the ability to 
return affected resources to an initial state. The current 

interpretation of the consistency property recogniZes con 
sistent states only at explicit transaction boundaries, result 
ing in excessive processing at the end of a transaction and 
increased chance of failure. The isolation property is inter 
preted as strictly precluding the sharing of modi?ed 
resources and operations, so that performance is affected and 
certain operations may be performed redundantly even When 
they are identical. Finally, the durability property is gener 
ally interpreted as requiring a hard record of only the ?nal 
state of a transaction’s resources (or its equivalent), thereby 
sometimes requiring excessive processing at commit or 
rollback. All of these taken together result in less than 
optimal use of resources and ine?icient error recovery 
mechanisms. The traditional techniques for preserving the 
ACID properties, optimiZing resource usage, and recovering 
from errors cannot be applied effectively in many business 
environments involving complex transactions, especially 
those pertaining to global electronic commerce and business 
process automation. 

The current invention introduces a method of transaction 
processing, comprised of a set of sub-methods Which pre 
serve the ACID properties Without being restricted by the 
traditional interpretations. The concept of atomicity is 
re?ned to mean that either all effects speci?c to a transaction 
Will complete or they Will all fail. The concept of consis 
tency is re?ned to mean that Whenever a class of consistency 
conditions apply to tWo states connected by a set of opera 
tions Which are otherWise atomic, isolated, and durable as 
de?ned here, that set of operations constitute an implicit 
transaction. The isolation property is re?ned to mean that no 
tWo transactions produce a con?icting or contradictory effect 
on any resource on Which they are mutually and concur 
rently (that is, during the time they are processed) depen 
dent. The durability property is re?ned to mean that the ?nal 
state of a transaction is recoverable insofar as that state has 
any effect on the consistency of the history of transactions as 
of the time of recovery. Thus, if the recovered state differs 
from the ?nal state in any Way, the durability property is a 
guarantee that all those differences are consistent With all 
other recovered states and external effects of the transaction 
history. Finally, a logical transaction is understood as a 
transition from one state in a class of consistent states to a 
state in another class of consistent states. This is similar to, 
but clearly distinct from, the concept that the interleaved 
operations of a set of serialiZable, concurrent transactions 
produces a ?nal result that is identical to at least one serial 
execution of those transactions. Just as serialiZability pro 
vides no guarantee as to Which apparent ordering of the 
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10 
transactions Will result, so the neW understanding of a 
logical transaction provides no guarantee as to Which con 
sistent state in the class of achievable states Will result. 
The present invention asserts that these re?nements of the 

ACID properties and of logical transactions permit a more 
realistic computer representation of transaction processing, 
especially business transaction processing. Furthermore, 
these re?nements permit transaction processing methods 
that include both the traditional methods and the sub 
methods described in this invention. The neW set of sub 
methods used, both individually and together, make it pos 
sible to manage complex transactional environments, While 
optimiZing the use of resources in various Ways. These 
techniques extend to distributed transactions, and to busi 
ness transactions Which span both multiple individual trans 
actions as, for example, in a business process, and multiple 
business entities as is required in electronic commerce and 
business-to-business exchanges. 

In particular, these sub-methods include: (1) establishing 
and using consistency points Which minimiZes the cost of 
recovery under certain types of error; (2) transaction relay 
ing Which permits Work sharing across otherWise isolated 
transactions, While simultaneously minimiZing the impact of 
failures; (3) corrective transactions Which permit error 
recovery Without unnecessarily undoing Work, Without so 
called compensating transactions, and While enabling the 
tracking and correlation of errors and their correction; (4) 
lookahead-based resource management based on dependen 
cies Which enables optimiZed resource usage Within and 
among transactions; and, (5) dependency-based concurrency 
optimiZation Which enables optimiZed scheduling and iso 
lation of transactions While avoiding the high cost of locking 
and certain other concurrency protocols Wherever possible. 
Each of these sub-methods is capable of being used in 
complex transaction environments (including distributed, 
linked, and mixed) While avoiding the overhead associated 
With traditional transaction management techniques such as 
tWo-phase commit, each can be used in combination With the 
others, and each of these are detailed in the description of the 
invention beloW. 
TWo of the sub-methods introduced here, consistency 

points and corrective transactions, address the problem of 
error recovery and correction. Consistency points differ 
from savepoints in that they add the requirement of a 
consistent state, possibly automatically detected and named. 
Corrective transactions differ from compensating transac 
tions in that they effectively enfold both error repair and the 
correction, Whereas compensating transactions address only 
error repair. One problem With the current approaches to 
handling errors that occur during complex or distributed 
transactions is that they fail almost as often as they succeed. 
A second problem is that they are di?icult for the human 
individuals Who experience both the problem and the cor 
rection, because they do not meet peoples’ expectations of 
hoW the real World handles problems. Athird problem is that 
they do not offer an opportunity to record both the error and 
the correction applied, Which makes adaptive improvements 
harder to derive as much of the value of the experience (hoW 
the mistake Was made and hoW it Was corrected) is discarded 
after the correction is completed. A fourth problem is that 
they are relatively inef?cient. Jointly, consistency points and 
corrective transactions overcome these problems. 
The transaction relaying sub-method provides a means for 

ef?cient, consistent management of inter-dependent trans 
actions Without violating atomicity or isolation require 
ments, Without introducing arti?cial transaction contexts, 
and While enabling resource sharing. Current approaches for 
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linking inter-dependent transactions (through, for example, 
a single distributed transaction With tWo-phase commit, as 
chained transactions, or through asynchronous messaging) 
do not simultaneously insure ACID properties and ef?cient, 
manageable error recovery. One problem With current 
approaches is the high resource cost of ensuring consistency 
and atomicity (the later becoming a someWhat arti?cially 
expanded requirement). A second problem is the high cost of 
error recovery, inasmuch as the approach introduces dif?cult 
to manage failure modes, most of Which are incompatible 
With the sub-method of corrective transactions introduced 
here. A third problem is that the approach, in an attempt to 
avoid the high overhead of distributed transactions, may 
permit inconsistencies. A fourth problem is that they may be 
compatible only With ?at transaction models, While required 
business transactions and business processes cannot be 
implemented using a ?at transaction model. Transaction 
relaying overcomes these problems. 

The remaining tWo sub-methods, lookahead-based 
resource management, and dependency-based concurrency 
optimiZation, each enable ef?cient use of resources, espe 
cially in highly concurrent environments. One problem With 
current approaches is that they do not make good use of 
information knoWn in advance of transaction or operation 
execution, but depend primarily on dynamic techniques With 
the result that hand-coded solutions may perform more 
ef?ciently. A second problem is that they may not be 
compatible With the method (or the individual sub -methods) 
introduced here, hence an alternative approach to resource 
management and concurrency optimiZation is required to 
make the other neW sub-methods viable. Lookahead-based 
resource management and dependency-based concurrency 
optimiZation address these problems. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a transaction state graph contrasting transaction 
processing error recovery, With and Without consistency 
points. 

FIG. 2 is a transaction state graph illustrating a corrective 
transaction. 

FIG. 3 is a transaction state graph illustrating transaction 
relaying. 

In FIGS. 1*3, the thicker lines indicate the intended, 
error-free How of Work, While the thinner lines indicate 
corrective or ameliorative efforts once an error occurs. 

FIG. 4 is an example of code reorganization and optimi 
Zation using lookahead resource management. 

FIG. 5 is a transaction state graph illustrating an example 
(one possible alternative out of many) of dependency-based 
concurrency control. 

FIG. 6 is an overvieW of a component combination for the 
joint application of the submethods, implemented in an 
ATM. 

DETAILED DESCRIPTION OF THE DRAWINGS 

FIG. 1: At time t1 (1), a transaction is begun and the 
current state is effectively saved. A portion of Work is done 
betWeen t1 (1) and t2 (2) and another portion of Work is done 
betWeen t2 (2) and t3 (3). At time t4 (4) and before the 
transaction can reach its intended completion state (5) an 
error is detected. Without consistency points, the ATM 
initiates a rollback (7) and restores the initial state (1) at time 
t5, effectively losing all the Work done prior to time t4 (4). 
The entire transaction must noW be redone. 

20 

25 

30 

35 

40 

50 

55 

60 

65 

12 
By contrast, if the transaction manager detects and saves 

a consistency point at time t3 (3), the ATM initiates a lesser 
rollback (6) and restores the saved consistency point (3) at 
time t5. The Work done betWeen t1 (1) and t3 (3) is 
preserved, and only the Work done after time t3 (3) and prior 
to time t4 (4) is lost and must be redone. 

FIG. 2: TransactionAbegins at consistency point CPO (8), 
transitioning state through consistency points CP1 (9) and 
CP2 (10); then Transaction A commits and Transaction B 
begins. Transaction B encounters an undesirable condition 
E1 (11) before it can transition to consistency point CP3 (12) 
and commit. The ATM determines that condition E1 (11) is 
associated With consistency points of category C1, and that 
only CP1 (9) of prior consistency points CPO, CPI, and CP2 
belongs to category C1. The ATM then restores the state to 
consistency point C1 (9). It further determines that reachable 
consistency points CP3 (12) and CP6 (13) belong to the 
same consistency category C2 While consistency point CP5 
(14) belongs to consistency category C3. Transaction C is 
then executed as a corrective transaction, transitioning state 
from consistency point CP1 (9) to consistency point CP4 
(15), and then Transaction D is executed transitioning state 
from consistency point CP4 (15) to consistency point CP6 
(13)ian acceptable stateiWhere it commits. A second 
alternative Would have been to execute Transaction C as a 
corrective transaction, transitioning state from consistency 
point CP1 (9) to consistency point CP4 (15) and then 
execute Transaction E transitioning state from consistency 
point CP4 (15) to consistency point CP5 (14)ianother 
acceptable stateiWhere it commits. 

FIG. 3: TransactionAbegins to use resource sets RSO (17) 
and RS1 (18), Which are both in a consistent state, at 
consistency point CP1 (19). Both transition to durable 
consistency point CP3 (20), at Which point Transaction A 
noti?es the ATM that it Will not subsequently modify RS1. 
Transaction B begins With resource set RS2 (21) in a 
consistent state at consistency point CP2 (22) and transitions 
it to consistency point CP4 (23). At CP4 Transaction B 
noti?es the ATM that it requires resource set RS1 to con 
tinue. The ATM transfers (24) both control and the state of 
resource set RS1 at CP3 (20) from Transaction A to Trans 
action B at consistency point CP4 (23). If no errors occur 
subsequently, Transaction A continues, modifying resource 
set RSO, transitioning its state from consistency point CP3 
(20) to consistency point CP5 (25) and commits. LikeWise, 
Transaction B continues in the absence of subsequent errors, 
modifying resource sets RS1 and RS0, transitioning from 
consistency point CP4 (23) to consistency point CP6 (26) 
and commits. 

If an undesirable condition E1 (27) occurs in Transaction 
A subsequent to consistency condition CP3 (20) and prior to 
commit, and after Transaction B has committed or is in 
?ight, the ATM simply restores (28) resource set RSO to 
consistency condition CP1 (19). If Transaction B has 
aborted, the ATM also restores resource set RS1 (18) to 
consistency condition CP1 (19). (It is also possible to restore 
to consistency condition CP3 (20) and re-run the Work that 
affects only RSO; although this is not shoWn in the diagram.) 

If an undesirable condition E2 (30) occurs in Transaction 
B subsequent to consistency condition CP4 (23) and prior to 
commit, and TransactionA has committed or is in-?ight, the 
ATM restores (31) resource set RS2 to consistency condition 
CP2 (22) and restores (32) resource set RS1 to consistency 
condition CP4 (23). If Transaction A is in-?ight, the ATM 
also transfers (33) control of resource set RS1 (80) to the 
Transaction A context (18). If Transaction A has aborted, it 
further restores resource set RS1 (18) to consistency condi 
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tion CP1 (19). (Again, it is also possible to restore to 
consistency condition CP4 (23) and rerun the Work that 
a?fects both resource sets RS1 (80) and RS2 (21), Without 
handing control over RS1 (80) back to the Transaction A 
context, although this is not shoWn in the diagram.) 

FIG. 4: The ATM analyzes and reWrites Transaction D 
from the Initial De?nition (on the left hand side) to the 
re-structured Enhanced De?nition (on the right hand side). 
Directives are inserted regarding favoring (34) (35) and (36), 
to assert consistency points (37)(38), and to deallocate 
resources (39)(40)(41). The “Read Z” step is performed 
earlier (42), thereby optimizing ef?ciency. The “Write Y:Y+ 
AX” step is also performed earlier (43), thereby enabling 
both interim assertion of consistency points (37)(38) and the 
early deallocation, after its last use in the transaction, of each 
resource (39)(40)(41). 

FIG. 5: This shoWs the scheduling of four concurrent 
transactions E, F, G, and H. The ATM determines from 
dependency information that Transaction E consists of con 
sistent groups CG1 (44), CG2 (45), CG3 (46), and CG4 (47), 
that Transaction F consists of consistent groups CG5 (48) 
and CG6 (49), that Transaction G consists of consistent 
groups CG7 (50), CG8 (51), and CG9 (52), and that Trans 
action H consists of a single consistent group CG10 (53). It 
further determines that CG6 (49) shares a dependency With 
consistent groups CG1 (44), CG3 (46), and CG4 (47), CG9 
(52) shares a dependency With consistent group CG1 (44), 
and that there are no other dependencies among the trans 
actions. Transaction H is not in the same con?ict class as E, 
F, or G. Given this information, the ATM begins Transac 
tions E, F, and H at time tO (54), scheduling consistent 
groups CG1 (44), CG5 (48), and CG10 (53) for immediate 
and concurrent execution. At time t1 (55) after consistent 
group CG1 (44) completes, it schedules consistent groups 
CG2 (45), CG3 (46), CG4 (47), and CG7 (50) to run 
concurrently. At time t2 (56) after consistent groups CG2 
(45), CG3 (46), and CG4 (47) have completed, Transaction 
B commits. After consistent group CG7 (50) of Transaction 
G completes at time t3 (57), consistent group CG8 (51) is 
scheduled to run. Also at time t3 (57) after Transaction B has 
committed, consistent group CG6 (49) of Transaction F is 
scheduled to run; and then at time t4 (58) the ATM schedules 
consistent group CG9 (52) to run. (If Transaction E has 
already committed, the ATM can schedule consistent groups 
CG8 (51) and CG9 (52) of Transaction G to run concur 
rently, although this is not shoWn in the diagram.) Because 
Transaction H cannot possibly be in con?ict With Transac 
tions E, F, and G, it is permitted to run to completion Without 
further scheduling and Without isolation otherWise enforced. 
At some time t5 (59) all the transactions Will have completed 
and committed. 

FIG. 6: The ATM, in the preferred embodiment, contains 
all of the subunits referenced in this diagram. Due to the 
complexity of potential interconnectivity, Which may be 
dynamically rearranged, it is infeasible to display all pos 
sible interconnections and hierarchies. 
The Parser (60) has responsibility for interpreting or 

compiling transaction de?nitions, Which it may receive from 
an external source or by reference to a transaction de?nition 

stored in the Repository (71) via the Repository Manager 
(61). The Parser may forWard interpreted or compiled trans 
action de?nitions to the Repository Manager (61) for 
deferred execution or to the Execution Manager (62) for 
immediate execution. The Execution Manager (62) pro 
cesses transactions, allocating and deallocating transaction 
contexts, passing directives and instructions to the appro 
priate ATM components, and orchestrating transaction 
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scheduling, commit, rollback, and rollforWard. The Consis 
tency Manager (63) has responsibility for automatic identi 
?cation of consistency points and veri?cation of asserted 
consistency points. The Correction Processor (64) has 
responsibility for correlating abnormal conditions and con 
sistency points, either by direct association, or through 
condition categories or consistency classes. Based on the 
transaction de?nition and possibly a business process de? 
nition, it may use various techniques to discover, optimally 
select, or create a corrective transaction and submit it to the 
Execution Manager (62). The Dependency Manager (65) 
has responsibility for interpreting dependency directives, 
detecting dependencies, identifying consistent groups based 
on dependencies and asserting the corresponding consis 
tency points. The Restructuring Processor (66) has respon 
sibility for altering the order of transaction steps based on 
information from the Repository (71), the Consistency Man 
ager (63), and the Dependency Manager (65). The Reposi 
tory (71) is also responsible for including internally derived 
resource management and consistency directives in the 
transaction de?nition. The Resource Manager (67) is 
responsible for accessing and updating resources, allocation 
management, scheduling, resource isolation, maintaining 
cache, and other resource constraints. The Resource Man 
ager (67) is also responsible for detecting resource require 
ments, implementing resource management directives, and 
providing resource management directives to the Restruc 
turing Processor (66). The Repository Manager (61) is 
responsible for coordinating all stored information, includ 
ing dependencies, transaction de?nitions, associations, con 
dition classes, consistency categories, subscriptions, and so 
on. The Publication/Subscription Manager (68) is respon 
sible for processing publication and subscription de?nitions, 
detecting publication events, and notifying appropriate sub 
scribers of publication events. The Recovery Manager (70) 
is responsible for evaluating, selecting, and directing recov 
ery options, passing control to the Corrections Processor 
(64) if a corrective transaction is selected. The Isolation 
Manager (69) interacts With the Resource Manager (67) and 
more intensively the Resource Scheduler (72) to ensure the 
Isolation Property for every resource and transaction is 
correctly maintained, sending constraints and dependency 
information as needed to the Publication/ Subscription Man 
ager (68) and the Dependency Manager (65). 

DETAILED DESCRIPTION OF THE 
INVENTION 

Businesses Work in an imperfect World, and attempt to 
impose their oWn order on events. Constantly in a state of 
?ux, they persist in imposing ‘acceptable’ states through the 
efforts of all their employees, from the accountants running 
yearly, quarterly, Weekly, or even daily accounts, to the 
zealous (or indi?ferent) stock clerks managing inventory. 
When an error occurs, it is recognized because the result 

dilfers from What is expected. Results can dilfer from 
expectations in several Ways, including computational 
results, resources consumed, catastrophic failures to com 
plete the Work, excessive time to complete the Work, and so 
on. Typically, the business does not knoW either the explicit 
cause of an error or its full impact. For example, it may not 
knoW if data Was corrupted (Wrong account number), the 
procedure mistakenly performed (9*6I42), or the Wrong 
procedure used (multiplied instead of divided). Obviously 
errors (including those of timeliness and resource overuse) 
must be prevented to the degree possible. Any undesirable 
e?fects of errors must be repaired and the desired effects 
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asserted (correctionitraditionally by resubmitting the cor 
rected transaction). Furthermore, ?nding out Which error 
occurred, and enabling those errors to be tracked, over time 
becomes more valuable than merely repairing and correcting 
each as it occurs. In this Way the business can discover 
Where it needs to focus attention on improving the overall 
process and improving its ef?ciency. 

OvervieW of the Invention 
The present invention is a method, consisting of a coor 

dinated set of sub-methods, Which enables ef?cient transac 
tion processing and error management. By contrast With 
prior approaches, it is extensible to complex transactions 
and distributed business environments, and is particularly 
Well-suited to business process management. The sub 
methods are consistency points, corrective transactions, 
transaction relaying, lookaheadbased resource management, 
and dependency-based concurrency optimization. 

In the preferred embodiment of the present invention, a 
system implementing this invention (1) continually transi 
tions betWeen automatically-detected stable (i.e. logically 
correct and permissibly durable) acceptable states (each is 
also knoWn as a ‘consistency point’), ensuring rapid and 
minimal recovery efforts for any error; (2) automatically 
enables inter-linked, possibly distributed, transactions to 
share intermediate Work results at ‘consistency points’ 
through transaction relaying, moving from one acceptable 
state to the next; (3) ef?ciently manages I/O and storage use 
by identifying for each transaction (or procedure), in 
advance of execution, a set of data, resources, and operations 
depended upon by that transaction to move from one con 
sistency point to its succeeding consistency point; (4) sched 
ules the use of those resources in such a manner as to 
improve ef?ciency and concurrency While permitting 
dynamic scheduling of unplanned transactions; and (5) 
automatically implements repair and corrective efforts 
Whenever a mistake is identi?ed. 

In an extension of the preferred embodiment, the system 
shares resources and data that are touched or handled by 
multiple subordinate parts of a complex or distributed trans 
action, rather than duplicating the same and letting each part 
have its oWn copy, or rather than locking all other parts out 
While each particular part operates With that same data 
and/ or resources. This ‘overlap’ in effect becomes a WindoW 
into the entire business’ processes, a WindoW that moves as 
transactions, or parts thereof, successfully and correctly 
completeior When an error occurs, the effects are repaired, 
and failed Work corrected. Moreover, all that needs to be 
maintained during the process of a particular sub-part of the 
transaction is the ‘delta save’, that is, the changes since the 
knoWn consistency point Which the chain last reached. 

In yet a further extension, a system engages in transaction 
management by implementing transaction lookahead, or 
managing transaction dependencies, or any combination 
thereof. 

Each of the sub-methods are further detailed and expli 
cated below. 

1. Consistency Points 
Through the course of a transaction, it may happen that 

the set of resources enters a consistent state from time to 
time. Such a consistent state is referred to as a consistency 
point and may be detected automatically by the transaction 
manager or some other softWare subsystem, or may be 
manually asserted by the user (possibly via program code or 
interactive commands). Numerous methods for automatic 
detection of consistency exist in the literature and are 
Well-knoWn. Consistency points may be durable or non 
durable. Durability determines the circumstances under 
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Which they may be used. In effect, a consistency point is a 
savepoint With the added requirement of consistency and the 
optional property of durability. When the system detects a 
potentially recoverable error, it can rollback to the consis 
tency point by restoring the state as of the consistency point 
(exactly as it might to a synchronization point or Were a 
savepoint to have been asserted). It may then optionally and 
automatically redo the Work that Was subsequently done (by, 
for example, reading the log or log buffers) in the hope that 
the error Will not recur. This might be the case When, for 
example, (1) a deadlock is encountered (in Which case the 
consistency point need not be durable) or (2) poWer fails (in 
Which case the consistency point must be durable). Numer 
ous methods exist for recovery to a synchronization point or 
savepoint, and are Well-knoWn. Rollback to a consistency 
point Will, in general, be more efficient than rollback to the 
beginning of a transaction in a system Which does not 
support consistency points. 

These examples illustrate some of the value of consis 
tency points: 

automatic deadlock recoveryiWhen a deadlock is 
detected, the usual response is to return control to the 
user (or program) With an error message or to select one 
of the participating transactions and abort it. With 
consistency points, the system can implement an inter 
nal retry loop Which makes it very likely that the 
deadlock condition Will not recur (for a variety of 
reasons). Such an internal retry loop is much more 
e?‘icient than one implemented by the user (the usual 
approach to deadlock recovery). It is clearly more 
e?‘icient than having the system automatically break 
deadlocks by the method of picking a “victim” of those 
transactions involved, and forcing it to fail, and more 
reliable than expecting the correct response to have 
been encoded into a program by a programmer. 

automated savepointsiSavepoints are established by 
manual declaration of the user, either interactively or 
through a program, and as an added step in a transac 
tion. By contrast, consistency points can be established 
by automatic detection that some particular set of one 
or more pre-de?ned consistency conditions have been 
met. This enables both automatic and manual rollback 
to the most recent consistency point. 

categories of consistency pointsiUsers (including busi 
ness users, system designers and administrators) can 
de?ne multiple sets of consistency conditions so that 
multiple, different categories of states, each consistent 
With respect to a particular set of consistency condi 
tions, can be detected and named. Detection can be 
automatic and naming can be according to a pre 
de?ned naming convention. A consistency point of 
category C1 is more general than a consistency point of 
category C2 if every consistency point of category C2 
also belongs to category C1. Other rules of set theory 
apply and can be used to simply testing for consistency 
points of one or more categories using methods Well 
knoWn to one familiar With the art. 

categorized rollbackiBy establishing a relationship 
betWeen a type or class of error (based, for example, on 
error code) or other detectable condition, and a cat 
egory of consistency point (possibly based on name), 
the system can then rollback a transaction to an asso 
ciated category of consistency point When that error is 
detected. If the associated category of consistency point 
has not been detected or asserted, traditional error 
handling techniques can be used. Because both the 
relationship betWeen error type and category of con 
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sistency point, and the consistency conditions to be 
detection can be changed, the behavior of the system 
can be easily maintained. In one embodiment, this can 
be done Without the necessity of modifying transaction 
processing programs since the relationship and the 
consistency conditions can be held in a database (for 
example) and determined at program execution time. 

commit processingiWhen a transaction commits, the 
standard approach is to make the ?nal state of all 
affected resources durable. If a transaction contains one 
or more durable consistency points, the state of 
resources that have not been modi?ed since a consis 
tency point involving those resources need not be made 
durable during commit processing. This, in effect, 
permits commit processing to be spread out over time 
and possibly using parallel processing, thereby elimi 
nating hotspots and speeding commit processing. 

poWer failure recoveryiWhen poWer fails, the usual 
response is to enter system recovery processing once it 
has been restored. The canonical approach to system 
restart of transaction management systems is equiva 
lent to ?rst initiating rollback of each transaction 
uncommitted at the time of poWer failure, and then to 
initiate rollforWard. If the rollback phase for uncom 
mitted transactions is to the most recent consistency 
point, folloWed by noti?cation to the user as to “Where 
they Were” according to system records, the amount of 
Work that the system must do in order to restart and 
Which the user must then redo, is substantially 
decreased. A similar approach can be used for recovery 
from certain other types of failure, such as storage 
media failures, and incorporating other standard recov 
ery mechanisms as appropriate. 

Unlike all prior art, the present invention’s use of con 
sistency is far more consistent, logical, and poWerful. Most 
present-day DBMS products (e.g., IBM’s DB2 or Oracle’s 
Oracle 9i) implement only an extremely limited concept of 
consistency enforcement, generally knoWn as integrity rule 
or constraint enforcement. HoWever, While these products 
may verify that the changes made by a transaction are 
consistent With some subset of the knoWn integrity rules at 
various times (e.g., after each roW is modi?ed, after a 
speci?c transaction step is processed, or before transaction 
commit), no product currently on the market establishes and 
uses internally valid and logically consistent “checkpoints” 
(i.e. consistency points) to Which the transaction can recover 
(perhaps automatically). Nor do they permit the user to 
request the establishment of consistency points, to assert 
consistency points (except implicitly and often erroneously 
at the end of a transaction), or separate consistency points 
from synchronization points (as, for example, betWeen vola 
tile memory and durable storage). Other advantages and 
uses of consistency points are further detailed beloW as they 
interact With other elements of this invention. 
By extension, the method of consistency points can be 

applied to pseudo-transactions, physical transactions, logical 
transactions, and business transactions. 

2. Transaction Relaying 
Transaction relaying refers to the method of moving the 

responsibility for resource isolation and consistency in a 
WindoW from transaction to transaction, much like the baton 
in the relay race, and permitting sharing of that responsibil 
ity under certain conditions (explained beloW). By further 
analogy, and for the purpose of explaining transaction relay 
ing in its most simpli?ed form, tWo transactions A and B 
become like runners in a relay race (football game). The 
baton (football) is a resource that A must pass to B Without 
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dropping (corruption). A con?icting transaction C is like a 
member of the competing team that Would like to acquire 
control of the baton (football) from A and B. By passing the 
baton Without either runner sloWing doWn (permitting B to 
gain access to the resource held by A prior to commit), there 
is no opportunity for the competing team to acquire control 
(for con?icting transaction C to gain control of, let alone 
alter the resource). Furthermore, the entire process is much 
more ef?cient than if the runners Were to stop in order to 
make the transfer. 

Consider a transaction B having either a semantic or 
resource dependency (or both) on transaction A. For 
example, suppose that a particular business process consists 
of transactions A and B, and that there is an integrity rule or 
constraint, or a dependency that requires transaction B must 
alWays folloW A because it relies upon the Work done by A. 
In other Words, some portion of the ?nal state of resources 
affected by A (the output of A) is used as the initial state of 
resources required by B (the input of B). By the de?nitions 
of transaction and consistency point, the ?nal state of A is a 
consistency point, even before A commits. Under the usual 
approaches We must either (I) accept the possibility that the 
?nal state of A is altered by some transaction C before B can 
access and lock the required resources (the sequential trans 
action scenario), (2) accept the possibility that the state of 
resources needed by B is different than the state of those 
same resources as perceived by some other transaction 

(chained transactions), or (3) run transactions A and B 
combined in a distributed transaction, accepting the fact that 
all resources touched by either A or B Will be locked until B 
completes (the distributed transaction scenario). 

Transaction relaying recognizes the fact that A and B may 
share the state of the resources that B requires at least as 
soon as A enters the ?nal consistency point for those stated 
resources and has made that ?nal state durable (assuming 
durability is required). Unlike chained transactions, it need 
not Wait until A is ready to commit. It need not even Wait 
until locks are released. Rather, the transaction manager, 
lock manager, or some other piece of relevant softWare 
either transfers oWnership of those locks directly to B or 
establishes shared oWnership With B (as long as only one 
transaction has oWnership of exclusive locks on a resource 
at any given time if the ACID properties are desired), and 
never releases them for possible acquisition by C. Unlike the 
sequential transaction scenario, there is no possibility that C 
Will interfere in the execution of B. Unlike the chained 
transaction scenario, transaction relaying does not require 
transaction A to have committed, the beginning of transac 
tion B to be immediately after the commit of transaction A, 
the commit of A and begin of B to be atomically combined 
in a special operation (indeed, B may already have per 
formed Work on other resources), transactions A and B to be 
strictly sequential, or transaction B to be the only transaction 
that subsumes shared responsibility for resources previously 
operated on by transaction A. Unlike the distributed trans 
action scenario, resources held by A, but upon Which the 
initial state of B does not depend, are released as soon as A 
completes and there is no tWo-phase commit overhead. 
Unlike split transactions, transaction relaying does not intro 
duce arti?cial transaction contexts, can be fully automated 
Without sacri?cing consistency, and yet enables collabora 
tive transaction processing in Which Work groups can com 
municate about the status and intermediate results of their 
Work (including negative results). 
An extension of the method is to permit transaction B to 

have done additional Work on other resources prior to the 
consistency point discussed above. Another extension of the 
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method is to permit A to do Work on other resources after the 
consistency point discussed above. A further extension of 
the method is to permit transaction A to do Work after the 
consistency point discussed above, so long as no consistent 
state on Which transaction B depends is ultimately altered by 
transaction A. 

Yet another extension of the method is to permit transac 
tions other than transaction B to have a similar relationship 
to transaction A, involving possibly different resources and 
possibly different consistency points. The method preserves 
the ACID properties of all transactions as long as no more 
than one transaction in effect has responsibility for modi? 
cation of a shared resource at any particular time, and that 
transaction can rollback the state of those resources to the 
most recent durable consistency point in Which they are 
involved. If durability is not a recovery requirement (as, for 
example, during deadlock recovery), then the consistency 
point need not be durable. 
By extension, under transaction relaying, if the initial 

state of a resource as needed by one or more transactions 

including B happens to be an intermediate state of that 
resource produced by A, it may be made available to those 
transactions long before A commits if the folloWing condi 
tions are true (other conditions may enable this as Well): (1) 
at most one transaction of those sharing responsibility for 
recoverability, isolation, and consistency of resource modi 
?es those resources subsequently, (2) the intermediate state 
is a consistency point, and (3) the intermediate state is 
recoverable (though not necessarily durable). These condi 
tions are intended to guarantee that the result of A and B With 
transaction relaying around a consistency point is equivalent 
to some serializable interleaving of transactions D, E, F, and 
G, Where D is the Work that is A does before the consistency 
point, E is the Work A does afterward, F is the Work B does 
before the consistency point, and G is the Work B does after 
the consistency point. Other sets of conditions or rules that 
Would produce this result are possible. 

Moreover, the intermediate state produced by A could just 
as easily have been produced by B (or other speci?c trans 
actions) had the instructions to do so been inserted in B (or 
those other transactions) at some point prior to that at Which 
the intermediate state of A is accessed by B. Transaction 
restructuring such as this under transaction relaying may be 
used to improve processing ef?ciency and performance. By 
further extension, under transaction relaying a group of 
transactions can share multiple intermediate states. This may 
become important When scheduling subordinate parts of a 
complex transaction for the most ef?cient processing; trans 
action relaying alloWs a transaction management facility to 
balance Work amongst ‘subordinate’ transactions by includ 
ing instructions such as those described in all subordinate 
transactions (or at least establishing the means for such 
inclusion When needed) and then selecting Which of those 
subordinate transactions actually perform the Work so as to 
promote ef?ciency, either in advance of execution or 
dynamically during execution. 

In transaction relaying, both A and B share control over 
isolation of shared resources. For example, they Would share 
oWnership of the locks on the shared resources is locking 
Were used to control isolation. Optimally, and in order to 
preserve the consistency and isolation properties, bothA and 
B must have completed before transactions other thanA and 
B perceive locks on those resources to have been released. 
If B completes before A, B relinquishes its lock oWnership 
and A retains lock oWnership until A completes. If A 
complete before B, A relinquishes its lock oWnership and B 
retains lock oWnership until B completes. In this Way, both 
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A and B (all oWners of the shared resource) must release 
locks on shared resources in a manner consistent With the 

type of lock held (e.g., share versus exclusive locks) and the 
concurrency control mechanism before other transactions 
can access the resource. If A completes before B, B has lock 
oWnership. If A and B complete simultaneously, or When 
ever A and B have both completed, lock oWnership reverts 
to the resource manager and so locks are effectively 
released. In order to preserve serialiZability, the tWo-phase 
locking protocol applies to the shared resource as if a single 
transaction Were involved. The usual rules of lock promotion 
or demotion apply. Insofar as external transactions (that is, 
transactions not involved in sharing the resources in ques 
tion via transaction relaying) are concerned, a resource 
shared by A and B is locked in the manner Which is most 
exclusive of the types of access requested by A and B. 
Similar rules may apply to lock scope escalation (e.g., roW 
to page) and to transaction relaying involving more than tWo 
transactions. 
By obvious extension, transaction relaying can be used in 

systems that employ non-standard concurrency control 
schemes and enforce isolation through mechanisms other 
than locking; appropriate adjustment to the speci?c mecha 
nism that enforces isolation is then required to permit the 
sharing of resources at consistency points. 
By extension, transaction relaying enables a transaction 

management facility (or other appropriate softWare systems) 
to remove redundant operations performed by a group of 
transactions and assign those operations to a speci?c trans 
action or transactions, thereby improving the overall effi 
ciency of the system. Such a facility can determine Which 
operations among a group of transactions are redundant 
through automatic means Well-knoWn to those familiar With 
the art (for example, pattern matching), to be informed of 
those redundant operations by some other agent such as a 
human individual knowledgeable about the intent of the 
transactions in the group, or some combination of the tWo. 

Transaction relaying can be extended to arbitrarily com 
plex collections of concurrent and interdependent transac 
tions, even if those transactions Were running under distinct 
transaction managers in a distributed computing environ 
ment. In such cases, the means for isolation enforcement 
Will typically be distributed, but tWo-phase commit process 
ing is not required across those transactions involved in 
transaction relaying (although it need not be precluded). 
Numerous mechanisms for distributed isolation enforcement 
exist and Will be Well knoWn to one familiar With the art. 
Indeed, once the method of transaction relaying has been 
explained as it applies to tWo transactions (“A” and “B”), 
extensions to arbitrarily complex collections of concurrent 
and interdependent transactions, including those spread 
across a distributed computing environment hoWever geo 
graphically dispersed or hoWever many business entities 
may be involved, Will be obvious to one trained, competent, 
and versed in the art. 

By extension, this method of the present invention can be 
implemented so that transactions publish their states and/or 
consistency conditions at consistency points and permit 
other transactions to subscribe to the state of associated 
resources. A variety of methods may be used to determine 
Which of the subscribing transactions Will gain Write per 
mission over the associated resources and in What order. By 
further extension, the group of subscribing transactions can 
be treated to various methods of concurrency optimiZation, 
including the method of dependency based concurrency 
optimization described beloW. By extension, the method of 
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consistency points can be applied to pseudo-transactions, 
physical transactions, logical transactions, and business 
transactions. 

In another extension of the present invention, a locking 
?ag is used to denote the dependency upon each particular 
resource (including data elements), and to transfer control 
over and responsibility for such to the transaction Which has 
yet to attain a consistent state With the same, thereby 
allowing intermediate, partial, or distributed transactions to 
process and reach completion or acceptable states Without 
necessitating the entirety of a complex or distributed trans 
action to successfully conclude. 

3. Corrective Transactions 
Corrective transactions provide an alternative to both 

compensation and rollback in circumstances in Which the 
desired result of a transaction can be understood as produc 
ing a state that meets a particular set of consistency condi 
tions. For example, an ATM transfer transaction may have as 
its key consistency conditions the crediting of a speci?c 
account by a speci?c amount of money, and maintaining a 
balance of debits and credits across a set of accounts 

(including the speci?ed one). 
In the event that an error occurs during transaction 

processing, a corrective transaction appropriate to the error 
is invoked. Rather than restoring the initial state of a set of 
resources as Would either a rollback or a compensating 

transaction, a corrective transaction transforms or transitions 
the state of the affected set of resources to a ?nal state Which 
satis?es an alternative set of consistency conditions (integ 
rity constraints and transition constraints). The alternative 
set of consistency conditions constrain the ?nal state to one 
of possibly many acceptable states and may be, for example, 
completely distinct from the initial set or may be a more 
general category of consistency conditions. For example, 
consider a simple business process consisting of a tWo 
prede?ned but parameteriZed transactions, a funds-transfer 
transaction (parameteriZed for transfer amount and tWo 
account numbers) and a loan transaction (parameteriZed for 
loan amount but With ?xed account number). If an attempt 
to transfer a speci?ed amount betWeen tWo accounts fails 
because of insufficient funds, an automatic corrective trans 
action might loan the user the required funds, thereby 
expanding the consistency conditions to include an account 
not oWned by the user With respect to balancing credits and 
debits. In this example, the corrective transaction might be 
manually prede?ned by the bank and caused to run as part 
of an error handling routine. Similarly, rather than debiting 
the explicitly speci?ed account (for example, checking), it 
might debit an alternate account (for example, savings or an 
investment account). 

This method of the present invention replaces the usual 
?xed set of consistency conditions With a category of such 
sets and invokes an auxiliary set of actions (the corrective 
transaction) that Will transform the current state into one that 
satis?es some set of consistency conditions belonging to that 
category. That is, the traditional concept of the consistency 
property for transactions is re?ned such that the options for 
achieving a consistent state in the completion of a transac 
tion are broadened. For each set of consistency conditions 
de?ning the end state of a transaction, each of the other sets 
of consistency conditions belonging to its category consti 
tute an acceptable set of consistency conditions. This con 
cept of acceptable sets of consistency conditions mimics the 
real World of business, in Which errors are common and a 
strictly pre-determined result of Work is not possible. Rather, 
those Who perform Work in a business context strive to 
achieve some acceptable result, Where acceptability is deter 
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mined by satisfaction of a number of alternative sets of 
constraining conditions and is often associated With business 
risk and opportunity assessment. 

This method is particularly valuable When a set of linked 
interdependent transactions is involved and a ?at transaction 
model does not apply. For example, a classic problem of this 
nature involves the scheduling and booking of a travel 
itinerary. It is not uncommon that the ideal routing, carrier, 
and timing are unavailable for every segment of a multi 
segment itinerary, but that some compromise alternative is 
available. Each segment is often reserved and booked via a 
separate transaction, and cancellation penalties after more 
than a feW minutes may preclude arbitrary rescheduling. 
Possible compromises constitute alternative consistency 
conditions, possibly ranked by the traveler’s preference. If a 
transaction to book a particular segment of the itinerary fails, 
a corrective transaction can book an alternative for that 
segment. For example, it might involve booking a ?ight to 
an airport near the original segment destination and a rental 
car With the attendant compromise of less time betWeen 
?ights. Similarly, a corrective transaction might cancel a 
certain number of already scheduled segments in order to 
assert a more viable alternative schedule. The segments to be 
cancelled might be selected, for example, based on mini 
miZing any negative ?nancial impact on the overall cost of 
the itinerary. 

Business processes do not alWays lend themselves to such 
simple models as those assumed by existing approaches to 
transaction processing: often they involve interleaved multi 
hierarchies and netWorks. The processes a business uses to 
correct for errors do not alWays return the business to a prior 
state as is assumed in other approaches to transaction error 
handling (it Would be to costly to do so). Rather, the business 
is transitioned to some acceptable state and the nature of this 
state made available to those portions of the business that 
have some dependence upon it. Notice the repeated refer 
ence to “some acceptable state” instead of the more familiar 
technical notion of a speci?c internally consistent transac 
tion end state. Obviously, businesses do not folloW a rigid set 
of rules of consistency as a database might. HoWever, it 
should be equally obvious that some action Will be taken if 
the business is not in an acceptable state. Rather than 
ignoring this approach, depending entirely on manual cor 
rections (dif?cult if not impossible at today’s transaction 
volumes), or insisting that the map must be the territory, the 
present invention actively attacks the problem by de?ning 
consistent and acceptable states to Which the business pro 
cess Will move When it becomes ?aWed, states from Which 
it may resume normal transaction management once again. 

In a business process, the various constituent and linked 
transactions (including pseudo-transactions) often create a 
complex netWork of steps With many decision branches and 
concurrent sub-processes. Many portions of the process are 
designed to handle exception or error conditions. If a trans 
action fails, then rollback and redo, or rollback of a trans 
action that includes a decision branch, may not be a reason 
able option. In particular, such a recovery mechanism Will 
often consume so much time or other resources that the 
business process is no longer viable. The method of correc 
tive transactions requires that one identify a state that Would 
have been reachable had a different portion of the process 
been activated (that is, a different branch had been taken), 
and that satis?es an acceptable set of consistency conditions. 
Each such state is designated as an alternative end state. The 
failed transaction is then rolled back to the most recent state 
for Which a transaction or set of linked transactions (the 
corrective transaction) exist that Will transition from the 
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consistency point to an alternative end state. This point may 
be the current error state (and possibly inconsistent), or it 
may be the most recent consistency point. The corrective 
transaction is then run. 

The method of corrective transactions requires that each 
business, logical, or physical transaction submitted to the 
system, and Which is to be subject to the bene?ts of the 
method, be identi?ed according to the consistency condi 
tions that Will be enforced on the set of resources affected by 
that transaction or that such consistency conditions be 
automatically discoverable by the system. Such consistency 
conditions might, for example, be stored conveniently in an 
online repository so as to be accessible to the transaction 
manager, other appropriate software, or a human individual. 
Whenever an error occurs that results in the failure of the 
transaction (thereby failing to establish a state among the 
preferred ?nal states), the failed transaction is returned to a 
recoverable consistency point (the most recent one in the 
preferred embodiment). The error is classi?ed (in the pre 
ferred embodiment according to the nature of the most 
recent consistency point) and the corresponding set of 
consistency conditions on the affected resources is estab 
lished. A transaction (the corrective transaction) is then 
invoked Which Will transform the affected resources from 
the state of the most recent consistency point to a state that 
most closely approximates the intended state and satisfying 
the neW consistency conditions (We refer to these as “accept 
able conditions”), assuming that such a transaction exists. In 
the event that no such corrective transaction exists, the failed 
transaction is then returned to an even earlier consistency 
point, and an appropriate corrective transaction invoked. 
The process is repeated until an acceptable set of consis 
tency conditions is reached. By extension, this iterative 
process might be replaced by other techniques Which 
achieve an equivalent result, examples of Which are 
described beloW. 

In one embodiment, the establishment of a target set of 
acceptable conditions is determined automatically, for 
example by means as diverse as rule-based inference based 
on error class, the use of a theorem prover to determine 
conditions Which Will permit the transaction to complete, or 
a catalog lookup. In another embodiment, the establishment 
of acceptable conditions (or equivalently a transaction that 
Will produce those conditions) is determined by an interac 
tion With a suitably authorized person. One familiar With the 
art could easily specify numerous other means to determine 
the acceptable conditions based on a combination of class of 
error, recoverable consistency points Within the failed trans 
action, and consistent states accessible by executing one or 
more transactions. 

In one embodiment, the determination of the steps in the 
corrective transaction (that is, its de?nition) are ?xed in 
advance and there is one such transaction for each class of 
error. In another embodiment, the steps Which constitute the 
corrective transaction (Which themselves might be either 
implicit or explicit transactions) are determined automati 
cally using, for example, a theorem-prover Which reasons 
from the consistency point (initial state as axioms) to a ?nal 
state Which meets the acceptable conditions, the steps of the 
proof being the steps in the corrective transaction. In an 
alternative embodiment, back chaining is used to start from 
an arbitrary, potential state that meets the acceptable con 
ditions and as de?ned, for example, as part of an overall 
business process schema, incorporating steps from a pool of 
pre-de?ned steps, operations, or transactions until the state 
given as the consistency point Was reached. The incorpo 
rated steps in reverse order of discovery then de?ne the steps 
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of the corrective transaction. In such an embodiment, both 
the failed transaction and the corrective transaction might be 
business transactions consisting of ordered activities or 
transactions, thus each being portions of a business process, 
possibly involving human interaction to accomplish busi 
ness activities. 

In another embodiment the selection of acceptable con 
ditions, acceptable state, and sequence of steps that consti 
tute the corrective transaction may be optimiZed using one 
or more of a variety of optimiZation techniques (these Will 
be Well-knoWn to those familiar With the art) to meet given 
optimization goals. For example, the optimiZation goals 
might optimiZe for minimum resource usage, shortest execu 
tion time, least human interaction required, and the like. 
Similarly, the members of the set of acceptable conditions 
may be possibly prioritiZed or ordered based on some 
arbitrary optimiZation criteria, and subsequently selected as 
needed through automated or manual means. 

It is Well Within the means of the average professional 
skilled in the relevant arts to extend the concept of a 
corrective transaction to more complex scenarios involving 
multiple transactions of Which is desired some group behav 
ior. A common example occurs in practice in the context of 
process management and Work?oW. By a process We mean 
a collection of interdependent transactions (including pos 
sibly business transactions, logical transactions, and pseudo 
transactions) that transform the state of a set of resources in 
a Well-de?ned though not necessarily strictly deterministic 
manner, that manner being identi?ed by a collection of 
transition rules (integrity constraints) Which specify the 
permissible (partial) orderings of those transactions in time. 
Certain connected subsets of these transactions may them 
selves have atomic properties though not all of the ACID 
transaction properties, and so are considered pseudo-trans 
actions. In some embodiments of a process, some or all of 
the transactions constituting the process may not be true 
transactions in the strict sense of the Word and may be 
referred to as tasks, activities, business functions, and the 
like. (Indeed, the individual operations of any type of 
transaction can be considered to be a process.) For example, 
it may be dif?cult in practice to enforce the isolation 
property across these transactions: thus, the result of some 
transaction deep in the dependent chain (or tree or net) may 
in?uence the outcome of some transaction that is not one of 
those in the atomic group. For practical reasons (perfor 
mance, lack of control, etc.), We may not be able to use 
distributed transactions or compensation. Both distributed 
transactions and compensation may furthermore be undesir 
able simply because they return the process to an initial state 
for the atomic group of transactions rather than moving it 
forWard to an acceptable state and meeting acceptable 
conditions. 
The method of corrective transactions permits analysis of 

a process schema of Which a failed transaction is a part, the 
supplementing of the process as necessary With interactive 
input, and determination of a partially ordered set of trans 
actions or actions (this set constituting the corrective trans 
action) that Will transition from the current state to a state 
that is approximatelyiin terms of consistency goalsithe 
same as Would have been achieved had all gone Well. HoW 
closely the corrected state approximates the one that Would 
have resulted is entirely under the control of the system 
designer, constrained only by limitations imposed by the 
intended application or the real World. 
A process often contains multiple alternate paths speci 

fying the Work to be done and leading to various states or 
conditions satisfying various consistency conditions, the 
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alternate paths being selected either singularly or severally 
at a branch point in the process. Thus, from a branch point 
it may be possible to achieve a certain amount of Work and 
an associated acceptable state in multiple Ways, some more 
“consistent” or more ideal than others. It may even be able 
to achieve exactly the ideal acceptable state by an alternate 
path. Such an alternative path constitutes the corrective 
transaction. It may involve using different resources, require 
doing some Work that Would not otherWise have been done, 
require leaving some otherWise desirable Work undone, 
require supplementing the process With interactive input, 
and so on. 

In further extension to the preferred embodiment of this 
submethod of the present invention, a cost-bene?t approach 
(similar to that sometimes applied to compensatory trans 
actions) is used. Traditional compensating transactions are 
used When the combined cost of undo folloWed by redo is 
relatively small and has minimal impact on the rest of the 
system, When there are no context-dependent side-effects 
involved, When there are commutable transactions at every 
stage, or When an undo folloWed by redo is unlikely to cause 
errors in some other portion of the system (given the 
resource cost and especially in terms of time delays). Oth 
erWise, a corrective transaction is used to transition directly 
to an acceptable state Which then need not be the original 
target state. 

In a further extension of the preferred embodiment of this 
submethod of the present invention, this method permits 
manual input to de?ne and apply the corrective transaction 
to the current state to reach the desired acceptable state. 

In a further extension of the preferred embodiment of this 
submethod of the present invention, this method uses pre 
viously-determined, policy-driven programming imple 
menting pre-set rules of the business to derive, from the 
difference betWeen the desired acceptable state and the 
current but incorrect state the nature of the corrective 
transaction, and then automatically applies the corrective 
transaction to the current state to reach the desired accept 
able state. 

In a further extension of the preferred embodiment of this 
submethod of the present invention, this method uses meth 
ods such as goal-oriented programming or genetic algo 
rithms to derive, from the difference betWeen the desired 
acceptable state and the current but incorrect state the nature 
of the corrective transaction, and then automatically applies 
the corrective transaction to the current state to reach the 
desired acceptable state. 

In one alternative extension of the above further extension 
to the preferred embodiment of this submethod of the 
present invention, this method uses backWard-propagating 
logic (‘back propagation’) to derive, from the difference 
betWeen the desired acceptable state and the current but 
incorrect state the nature of the corrective transaction, and 
then automatically applies the corrective transaction to the 
current state to reach the desired acceptable state. 

In an alternative extension of the last-named extension of 
the present invention, the method uses matrix, linear, or 
other algebraic algorithms to calculate the least-cost, high 
est-bene?t corrective transaction to the current state to reach 
the desired acceptable state, and then automatically applies 
the corrective transaction to the current state to reach the 
desired acceptable state. 

In another alternative extension of the present invention, 
the method uses single-element rede?nition algorithms to 
calculate the least-cost, highest-bene?t corrective transac 
tion to the current state to reach the desired acceptable state, 
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and then automatically applies the corrective transaction to 
the current state to reach the desired acceptable state. 

In another alternative extension of the present invention, 
the method uses any of the above-named techniques to 
calculate the corrective transaction to be applied to the 
current state, but only attempts to satisfy the minimally 
acceptable set of conditions When attempting to derive the 
corrective transaction. 

In another alternative extension of the present invention, 
the method uses any of the above-named techniques to 
calculate Which corrective transaction Will reach the closest 
possible alternative end state to the minimally acceptable 
consistent state, applies the corrective transaction, and then 
reports the remaining difference for manual implementation 
of the ?nal step to reach said minimally acceptable consis 
tent state. 

By extension, the method of consistency points can be 
applied to pseudo-transactions, physical transactions, logical 
transactions, and business transactions. 

4 Lookahead-based Resource Management 
Existing resource management methods do not take into 

account available information about either the operations 
and resources involved in a transaction, or the transactions 
(and therefore the resources) involved in a business process. 
Thus, for example, if a ?rst step involves a request to read 
a data resource and a subsequent step involves a request to 
modify that same data resource, the probability of that data 
resource being found in cache is not in?uenced by any 
determination that the subsequent step Will or Will not 
require that data resource. Some DBMS products attempt to 
keep all data resources, once accessed, in cache (or some 
other high speed storage). Various algorithms may be used 
for determining When cache, or some portion thereof, can be 
overWritten (for example, a least recently used algorithm and 
its many variants). Other DBMS products may in?uence the 
probability that certain data resources Will be kept in cache 
for a longer time based on statistical patterns of access. For 
example, certain types of requests involve sequential read 
ing of large amounts of data resources and it makes sense to 
“pre-fetch” the next group of data in the expectation that the 
sequential reading Will continue. As another example, cer 
tain types of cursor activity in a relational DBMS strongly 
suggests that the data resource initially read Will be subse 
quently updated, as With SQL requests of the form OPEN 
CURSOR . . . FOR UPDATE . . . . None of these methods 

has the advantages of predetermining the need for resources. 
Lookahead-based resource management is a submethod 

of the present invention that enables optimiZed automation 
and execution of a transaction or group of transactions, 
particularly feasible and appropriate for complex transac 
tions as de?ned above. This is accomplished by making 
some or all resources (such as data or other resources) that 
Will subsequently be used in processing a transaction or 
group of transactions explicitly knoWn to the softWare 
responsible for processing said transaction or group of 
transactions in advance of the need to execute said transac 
tion or group of transactions. The optimiZed management of 
those resources needed to process the transaction or group of 
transactions, and possibly other resources, is enabled by 
means to inform the softWare responsible for processing 
and/or optimiZation (the ‘Transaction Process’) of said 
resources either by directive or by inference in association 
With the de?nition of the request for said processing. This is 
done by making the de?nition of one or more steps in a 
transaction (or group of transactions) knoWn by one of 
several means to the Transaction Process in advance of the 
request to process said step or steps. From such an advance 
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de?nition, the Transaction Process can infer the resources 
necessary to perform said step or steps. Alternatively, and as 
a means of further ef?ciency, the originator of the request 
de?nition (Whether a human, program, or machine) can 
incorporate the identi?cation of the resources directly in the 
de?nition. As a means of yet further e?iciency, the originator 
can include Within the request de?nition directives that 
instruct the Transaction Process as to hoW to optimally 
manage resources in anticipation of steps of a transaction or 
group of transactions. 

In the preferred embodiment of this submethod, the entire 
transaction de?nition is made knoWn to the Transaction 
Process in advance of the initial request to begin processing 
that transaction (possibly by name or some other transaction 
identi?er). The de?ner of the transaction identi?es at trans 
action de?nition-time the data resources that should be 
highly favored for cache retention, at What step to begin such 
favoring, and at What step to remove or reduce that favoring. 
As a further e?iciency, these identi?cations may be aided 
through automated techniques such as monitoring the use of 
resources While the transaction is being run, thereby iden 
tifying those resources and determining at Which points 
particular resources are no longer required. In this embodi 
ment, these resources are accessed once and then maintained 
in cache until the last step that needs said resources. In the 
event that there is insufficient cache, other secondary meth 
ods of cache management may then be used. As a further 
efficiency, resources are acquired and released at consistency 
points, thereby reducing the likelihood that an error or 
rollback condition Will force resources to be released. Thus, 
as a speci?c example, a transaction containing a step to read 
some data followed, perhaps With intervening steps, by a 
step to modify that same data might be prede?ned as a stored 
procedure (for example) and invoked by name. FolloWing 
the transaction de?nition, the Transaction Process marks the 
data read (as a consequence of the ?rst step) to be highly 
favored for retention in cache until the second step com 
pletes. The cache management algorithms used by the 
Transaction Process (Well knoWn to those familiar With the 
art) are augmented to give cache preference to data so 
marked in an obvious manner. In another embodiment, the 
Transaction Process identi?es the resources needed by each 
step of the transaction automatically, and further identi?es 
Which resources Will be needed multiple times, and at What 
point those resources may be released. 

In another embodiment, the Transaction Process further 
optimiZes processing by pre-allocating cache, storage space, 
locks, or other resources based on advance knoWledge of 
one or more of the steps in the transaction. In another 
embodiment, the Transaction Process may alter the order of 
execution of the steps in such a manner such that the 
intended meaning of the transaction is not altered, but 
resource management and possibly performance is opti 
miZed, as for example, pre-reading all data in such a manner 
as to reduce disk I/O, to improve concurrency, or improve 
parallel processing. Other similar and numerous optimiZa 
tions that become possible When one or more of the steps of 
a transaction are knoWn in advance of the need to process 
those steps Will be readily apparent to one familiar With the 
art. 

In another embodiment, the de?nitions of a group of 
transactions necessary to process a particular application are 
stored in a repository. When a request is made to run the 
application, the Transaction Process looks up the de?nition 
of the transactions pertaining to said application, including 
all the steps in each transaction. The Transaction Process 
then determines the resources necessary to perform each 
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step, determining at Which step said resources must be ?rst 
acquired, at Which step they Will last be used, and at Which 
step they can be ?rst released. (In an alternative embodi 
ment, the repository also contains identi?cation of all 
resources necessary to perform those steps, said resources 
having been previously identi?ed either by softWare or 
human means. In yet another alternative embodiment, the 
repository also contains the relative time of said ?rst acqui 
sition, ?nal use, and ?rst possible release of each required 
resource.) The Transaction Process then applies any of 
numerous optimiZation methods Well-knoWn or accessible 
to one familiar With the art to optimiZe management of 
resources in its environment including, for example, data 
caching, lock management, concurrency, parallelism, and 
the like. 

5 Dependency-based Concurrency Optimization 
The method of dependency-based concurrency optimiZa 

tion enables a scheduling facility to restructure the steps or 
operations in a collection of one or more transactions so as 

to optimiZe concurrency and ef?ciency. By restructuring We 
mean changing either the order or the context of execution 
of transactions, steps, or groups of steps so as to be different 
from that order or context in Which those transactions, steps, 
or groups of steps Were submitted. The purpose of this 
method of “static scheduling” is to determine Which trans 
actions can absolutely be run together Without interference, 
not Which ones cannot. If there is doubt, traditional dynamic 
scheduling can be used. Dependency-based concurrency 
optimiZation is an improvement upon traditional transaction 
classes and traditional con?ict graph analysis in that it 
provides a neW means to determine dependencies and to 
respond to them using transaction restructuring. By aug 
menting the de?nition of a transaction (or group of trans 
actions) With the dependencies among steps or groups of 
steps of said transaction and its consistency points, Whether 
by human or computer means, the identi?cation of Which 
steps must be performed in Which order can be determined 
using means Well-knoWn to those familiar With the art, 
including manual means. This information enables a com 
puter system capable of parallel or concurrent processing to 
perform those steps or groups of steps Which satisfy certain 
criteria to be performed in parallel or in an order different 
from the order in Which they are submitted, and possibly at 
the discretion of an optimiZer component. In particular, steps 
or groups of steps Which can optionally be performed in 
parallel or in a different order are those that (1) have no 
mutual dependencies and (2) are not dependent on any other 
steps that have not yet been performed. Said dependencies 
information and said consistency point information may be 
supplied by any of a number of means. For example, each 
dependence betWeen every pair of steps might be supplied as 
a simple instruction “(1,2), (1,3)”, meaning that step 2 
depends on step 1 and step 3 depends on step 1. Altema 
tively, the entire set of partially ordered dependencies might 
be supplied as a single data structure consisting of, for 
example, a linked list of trees With each tree specifying 
dependencies (a ‘dependency tree’), the linked list simply 
being one possible means of collecting the dependency 
trees. Similarly, steps can be grouped together such that they 
have no dependencies With any steps not in the group and 
such that, if they begin execution on resources that are in a 
consistent state, then those resources are left in a consistent 
state When that group of steps complete, such a grouping 
being knoWn as a ‘consistent group’. A consistent group 
bounded by durable consistency points satis?es the formal 
de?nition of a transaction, albeit an implicit transaction. For 
example, if steps 1, 2, and 3 form such a group of steps 






















